Mécanique des roches appliquée aux ouvrages souterrains Méthodes spécifiques d'analyse

École des Ponts ParisTech

ENPC - COTUN

Intervenants : Fabien BINET, Julian MARLINGE (BE TERRASOL, groupe SETEC)

- **Le comportement d'un massif rocheux**
- p.2 Les discontinuités
- **P.3** Stabilité des blocs et dièdres Boulonnage
- **P.4** Caractéristiques mécaniques du massif rocheux

1\ Le Comportement d'un massif rocheux

- Combinaison Matrice / Discontinuités
- Comportement variable selon les échelles
- Caractérisation du comportement de la matrice
- Caractérisation du comportement des discontinuités
- Description globale du massif rocheux : indices RMR, GSI ...

Le comportement d'un massif rocheux

p.2 Les discontinuités

- 2.1 Discontinuités et schémas de rupture
- 2.2 Caractérisation des discontinuités
- 2.3 Comportement mécaniques des discontinuités
- **P-3** Stabilité des blocs et dièdres Boulonnage
- **P.4** Caractéristiques mécaniques du massif rocheux

2\ Discontinuités \ 2.1 – Schémas de rupture

1 - Pendage subhorizontal : hors-profils et risques d'effondrement de la voûte (boulonnage)

3 - Galerie en travers-bancs : d'autant moins de hors-profils que le pendage est plus proche de la verticale

- 2 Galerie en direction : o) pendage oblique b) pendage vertical
 - hors-profils importants
 - flexion des couches minées tangentes à la paroi (boulonnage)
 - risque d'effondrement de panneaux importants dans le cas de pendage vertical

Pendage subhorizontal

Galerie en travers-bancs

Galerie en direction

.

2\ Discontinuités \ 2.1 – Schémas de rupture

Rupture par Défaut de résistance

2\ Discontinuités \ 2.1 – Schémas de rupture

Rupture en terrain fissuré

Rupture en voûte (fontis)

Schéma simplifié des déformations de terrains : « charge active » en voûte

• Etudes des familles de discontinuités :

- Définition Famille de discontinuité : ensemble d'individus de caractéristiques similaires
- Etude dans la zone de l'ouvrage, <u>en intégrant son l'échelle</u>
- Analyses statistiques des paramètres représentatifs :
 - Variabilité naturelle des paramètres géométriques
 - Variabilité des paramètres mécaniques
- Description des <u>familles représentatives</u> de la fracturation du massif rocheux

Les types de discontinuités :

- les plans de stratification : entre strates dans les massifs sédimentaires. Leur extension peut être très grande
- les contacts lithologiques : Entre deux matériaux différents.
- <u>les plans de schistosité</u> : Débit des roches en feuillets parallèles. Origine liées aux contraintes tectoniques. Extension est plus ou moins grande
- <u>les diaclases</u> : discontinuités séparant deux compartiments sans mouvement relatif. Elles peuvent s'organiser en familles directionnelles
- <u>les failles</u> : mouvement relatif entre les deux compartiments : faille normale, inverse et de décrochement fonction du champ de contrainte. Leur extension est très variable (métrique à pluri-kilométrique)
- les couloirs de fracturation : Assemblage de petites discontinuités de faible extension et d'orientations variées formant une structure continue

Organisation des discontinuités en familles :

Organisation des discontinuités en familles :

- Résultent de phénomènes géologiques et tectonique
 - Diagenèse
 - Métamorphisme
 - Tectonique compressive
 - Tectonique distensive

• Mesures systématiques : Azimut et pendage

Vecteur pendage / Vecteur normal

Mesure de la direction et du pendage

(convention internationale)

Vecteur pendage (convention alternative)

8 paramètres caractérisent les discontinuités

- orientation : Position du plan de la discontinuité dans l'espace. Permet le classement en familles directionnelles.
- <u>espacement</u> : distance entre deux discontinuités les plus proches d'une même famille mesurée perpendiculairement à celles-ci.
- <u>extension</u>: L'extension ou taille des discontinuités correspond à la surface totale de la discontinuité dans l'espace.
- <u>rugosité et ondulation de la surface de discontinuité</u> : A toutes les échelles, ces paramètres contrôlent la résistance au cisaillement de la discontinuité et la mobilisation ou non du phénomène de dilatance ;
- <u>altération des épontes</u> : Agit sur la déformabilité, sur la possibilité de mobiliser de la dilatance et donc sur la résistance au cisaillement.
- **<u>ouverture</u>** : distance entre épontes comptée perpendiculairement au plan de discontinuité ;
- remplissage
- présence d'eau

École des Ponts ParisTech

Précautions spécifiques aux mesures

- Les mesures de terrain subissent de nombreux biais
 - Influence de l'opérateur
 - Possibilités d'observation réduites
 - Représentativité des observations faites / position du projet

- Précautions spécifiques aux mesures
 - Les mesures de terrain subissent de nombreux biais
 - Influence de l'opérateur
 - Possibilités d'observation réduites
 - Représentativité des observations faites / position du projet
 - Pour limiter les biais de mesure
 - Mesures selon plusieurs directions de l'espace
 - Mesure sur un volume suffisant par rapport à la densité moyenne de fracturation du massif
 - Approche statistique
 - Description de la méthode d'acquisition utilisée

Méthode de représentation des discontinuités

• Projection polaire

Méthode de représentation des discontinuités

Projection par rapport au zenith

Représentation cyclographique et polaire

• Notion de familles et analyse statistique

2\ Discontinuités \ 2.2 - Caractérisation - APPLICATION 1

Application :

Canevas de Wulff - Représentation des familles suivantes :

- Famille F1 : N 10 E 42 E
- Famille F2 : N 70 E 48 N
- Famille F3 : N 50 E 72 SE
- Talus : N 140 E 45 NE

Application :

Canevas de Wulff - Représentation des familles suivantes :

- Famille F1 : N 10 E 42 E
- Famille F2 : N 70 E 48 N
- Famille F3 : N 50 E 72 SE
- Talus : N 140 E 45 NE

École des Ponts ParisTech

Analyse statistique

- Orientation des familles de discontinuité
- Extension des familles
- Analyse de l'espacement des discontinuités :

> Diagramme intégral de carottage

- Indice RQD (Rock Quality Designation)
- Fréquence des discontinuités : FD
 FD = nombre de discontinuité par mètre

Analyse statistique :

Analyse de l'espacement des discontinuités (Représentation)

Histogramme des longueurs des éléments d'un sondage carotté dans des calcaires : longueur carottée 158 m nombre total d'éléments 1197 longueur maximale 7,17 m nombre d'éléments (ei > 1 cm) 599 (λ = 0,0411) moyenne des iongueurs 25,4 cm écart-type 42,3 cm classificatior ID3(4) fracturation meyenne à forte

Histogramme des longueurs de carottes (loi normale)

Histogramme des longueurs des éléments carottés dans un massif calcaire, sans prise en compte des petits éléments (présents sur 1,85 m au total). Longteur du sondage 30 m, nombre d'éléments 213, longueur maximale 58 cm, longueur moyenne 13,2 cm, écart-type des longueurs 9,1 cm. Distribution gamma avec $\alpha = 1,13$ et $\beta = 6,21$.

Histogramme des longueurs de carottes (loi log-Normale)

Analyse statistique

- Orientation des familles de discontinuité
- Extension des familles
- Analyse de l'espacement des discontinuités
 - Diagramme intégral de carottage
 - Indice RQD (Rock Quality Designation)
 - Fréquence des discontinuités : FD
 FD = nombre de discontinuité par mètre

RQD = (\sum éléments de carottes > 10 cm/mètre foré) x 100 Indice global de densité de facturation.

Certaines conditions sont à respecter, relatives :

- Au diamètre des carottes
- A la mesure des longueurs des éléments au niveau de l'axe
- A l'indice de récupération compris entre 90 % et 100 %
- A la prise en compte uniquement des discontinuités naturelles
- A l'exclusion des discontinuités sub-parallèles à l'axe de la carotte
- A l'établissement du RQD dès (ou rapidement après) la sortie du carottier, afin de s'affranchir d'une éventuelle évolution du matériau par gonflement, libération de contraintes, dessiccation...

RQD (%)	QUALITE GLOBALE DU MASSIF ROCHEUX (D'après D. Deere)
90 à 100	Excellente
75 à 90	Bonne
50 à 75	Moyenne
25 à 50	Mauvaise
0 à 25	Très mauvaise

Analyse statistique

- Orientation des familles de discontinuité
- Extension des familles
- Analyse de l'espacement des discontinuités
 - Diagramme intégral de carottage
 - Indice RQD (Rock Quality Designation)
 - Fréquence des discontinuités : FD
 FD = nombre de discontinuité par mètre

ID = intervalle moyen entre discontinuités

Indice global de densité de facturation

INDICE ID D'INTERVALLE	TERMES DESCRIPTIFS DE LA
ENTRE DISCONTINUITES	DENSITE DE DISCONTINUITES
> 200 cm	Densité de discontinuités très faible
60-200 cm	Densité de discontinuités faible
20-60 cm	Densité de discontinuités moyenne
6-20 cm	Densité de discontinuités forte
<6 cm	Densité de discontinuités très forte

Courbe « granulométrique » de carotte

Histogramme et courbe cumulative des longueurs de carottes dans un sondage (d'après C. Louis, 1974)

Paramètres essentiels :

Résistance au cisaillement

- > Angles de frottement de pic et résiduel
- Cohésion apparente.

Déformabilité :

- Rigidité normale
- Rigidité tangentielle

Un paramètre "géométrique« :

Ia dilatance : Variation de déformation normale qui accompagne la déformation tangentielle lors d'un cisaillement

Résistance au cisaillement :

La résistance au cisaillement est fonction, entre autres :

- du frottement des épontes,
- de la rugosité des épontes,
- de leur degré d'imbrication
- et de leur altération..

Discontinuité plane et lisse a un comportement régi par :

• le frottement des épontes avec un critère de Coulomb

 $\tau = \sigma_n . tg\phi_b$

où ϕ_b est l'angle de frottement de base, fonction de la nature minéralogique et du degré d'altération des épontes)

Résistance au cisaillement :

3 paramètres fondamentaux régissant le comportement au cisaillement :

- la résistance de pic, définie par la contrainte de cisaillement maximum (τ_p), correspond au cisaillement des aspérités ;
- la résistance résiduelle (τ_r) caractéristique du frottement des épontes en contact après rupture des aspérités ;
- la dilatance caractérisée par l'angle de dilatance i (angle de la pente de la courbe de dilatance donnant le déplacement normal U_n en fonction du déplacement tangentiel U_s). Cet angle présente un maximum i_p au point d'inflexion de la courbe de dilatance

2\ Discontinuités \ 2.3 - Comportement mécanique

Résistance au cisaillement :

Approche empirique de BARTON (1973) :

$$\tau_{pic} = \sigma_n \cdot tg(\phi_b + i) = \sigma_n \cdot tg(\phi_b + JRC \cdot \log_{10} \frac{JCS}{\sigma_n})$$

- φ_b: angle de frottement de base, qui diffère de quelques degrés de l'angle de frottement résiduel φr
- JRC: « Joint Roughness Coefficient » : morphologie du joint
- JCS: « Joint Compressive Strength » : résistance en compression simple des épontes ; elle est souvent estimée indirectement in situ au moyen d'un scléromètre
- σ_n: contrainte normale appliquée sur la discontinuité

ICC

2\ Discontinuités \ 2.3 - Comportement mécanique

Déformabilité :

Rigidité normale :

La pente de la courbe donne la rigidité normale K_n qui est définie par la relation :

$$K_n = \frac{\delta \sigma_n}{\delta U_n}$$

La valeur de K_n dépend de la contrainte normale

Rigidité tangentielle :

La pente de la courbe donne la rigidité normale K_n qui est définie par la relation :

$$K_{s} = \frac{\delta \tau}{\delta U_{s}}$$

α : résistance à la traction Umax : limite de fermeture du joint

- **Le comportement d'un massif rocheux**
- p.2 Les discontinuités
- **p.3** Stabilité des blocs et dièdres Boulonnage
 - 3.1 Fracturation, Stabilité et Boulonnage
 - 3.2 Types de boulon utilisés
 - 3.3 Principes de dimensionnement du boulonnage
- **P.4** Caractéristiques mécaniques du massif rocheux

3\ Stabilité blocs et dièdres \ 3.1 – Stabilité, fracturation et boulonnage

Densité de fracture et niveau de contrainte

Contraintes
faiblesContraintes
élevéesImage: Contraintes
élevéesRéponse élastique
linéaire avec de
petites rupture ou
absence de rupture
de la rocheImage: Contraintes
élevéesImage: Contraintes
élevéesRéponse
broyag
s'initian
concent
et se p
masseImage: Contraintes
élevéesImage: Contraintes
élevéesRéponse
broyag
s'initian
concent
et se p
masseImage: Contraintes
élevéesImage: Contraintes
broyag
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
broyag
broyag
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
s'initian
concent
et se p
masseImage: Contraintes
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
broyag
br

Réponse en rupture avec broyage et éclatement s'initiant dans les zones de concentrations de contraintes et se propageant dans la masse rocheuse

Roche fracturée

Roche

massive

Décrochement, sou l'effet de la gravité, de blocs et de dièdres créés par l'intersection des discontinuités

Rupture par glissement sur les discontinuité, mais également par broyage et rupture interne de blocs

Roche extrêmement fracturée

Ruptures progressives de petits blocs et dièdre, pouvant se propager loin dans le massif

Rupture par glissement sur les discontinuité et par broyage de blocs avec soulèvement du radier et convergence des piédroits 3\ Stabilité blocs et dièdres \ 3.1 – Stabilité, fracturation et boulonnage

Densité de fracture et niveau de contrainte

Contraintes Contraintes faibles élevées Pas de renforcement ou boulonnage de sécurité ou épinglage et treillis soudé Boulonnage localisé pour éviter les

Renforcement par boulonnage avec treillis soudé ou béton projeté pour limiter la progression les ruptures dans la masse rocheuse

Roche

massive

rupture par blocs et dièdres

Boulons de section importante, inclinés pour recouper les structures rocheuses avec béton projeté et treillis ou fibres

Roche extrêmement fracturée

Maillage dense de boulons avec treillis sodé ou béton projeté

Maillage dense de boulons de forte capacité avec béton projeté fibré (acier). Renforcement du plancher par radier armé

3\ Stabilité blocs et dièdres \ 3.1 – Stabilité, fracturation et boulonnage

Soutènement par boulonnage : sections en tunnel

Soutènement par boulonnage : renforcement des tympans

Boulons scellés au terrain :

1. Boulons scellés au coulis

Avantages :

- Nombreux modèles
- Avantage du scellement au coulis dans les mauvais terrains
- Injection de coulis mais possibilité de mortier sec et d'eau séparée
- Système peu coûteux applicable sur une large plage de conditions géotechniques.

Inconvénients :

- nécessité de bien travailler pour qu'ils soient efficients
- délai d'attente pour la prise du coulis avant mise en tension

Boulons scellés au terrain :

2. Boulons scellés à la résine

Avantages :

- facilité de mise en œuvre (résine conditionnée en cartouches)
- scellement de haute résistance dans les mauvais terrains
- mise en tension immédiate possible

Inconvénients :

coût élevé

Boulons à friction (type swellex) :

Avantages :

- Rapidité de mise en œuvre ;
- mise en tension immédiate possible

Inconvénients :

- résistance à l'arrachement variable (effet de l'irrégularité du trou de forage);
- Pérennité mal connue (utilisation uniquement en soutènement provisoire)

Boulons à ancrage en fond de trou:

Avantages :

- Rapidité de mise en œuvre ;
- mise en tension immédiate possible
 Inconvénients :
- Résistance d'ancrage limitée ;
- Fonction support assurée par le la plaque d'appui ;

Notations :

- T : Epaisseur du bloc
- S_1 et S_2 : largeur, longueur du bloc
- $\gamma\,$: poids volumique de la roche

Principe de dimensionnement :

Cas idéalisé : 1 boulon par bloc instable Poids du bloc $W = \gamma t s_1 s_2$

Capacité du boulon : 1,3 . W

Application :

Données de fracturation pour le massif :

Deux familles de fracture :

- F1 : N 45 E 90 Espacement : 1.5 m
- F2 : N 135 E 90 Espacement : 1.8 m

Stratigraphie subhorizontale d'espacement 0.8 m

Données mécaniques :

Poids volumique du rocher : $\gamma = 26 \text{ kN/m}^3$

Frottement coulis / roche (qs) : 250 kPa

Sujet :

Question 1 : densité du boulonnage nécessaire ?

Question 2 : dimensionner les diamètre et longueur des boulons.

<u>Rappel des notations :</u> T : Epaisseur du bloc

 S_1 et S_2 : largeur, longueur du bloc

Chute de dièdre

Glissement de dièdre

Formes usuelles de blocs

Excavation classique rectangulaire

Excavation classique avec voûte

Géométrie conditionnée par la structure du massif

Renforcement avec grillage et plaque d'appuis des boulons

Renforcement avec treillis soudé dans la géométrie et les dimensions le permettent

Première phase d'excavation : chute de toit

rockbolt capacity

Seconde phase d'excavation : chute de toit et glissement en piédroit

Phases d'excavation suivantes : glissement en piédroits

Dièdres : effet des familles de fractures

Blocs potentiellement instables au toit d'une galerie : Chute libre (Hoek et Brown, 1980)

Dièdres : effet des familles de fractures

t A

Blocs potentiellement instables au toit d'une galerie : glissement (Hoek et Brown, 1980)

of planes A and B.

Glissement selon intersection des plans A et B Angle phi : frottement sur les discontinuités

Conditions for sliding failure of roof wedgee

Vues en plan et en coupe permettant de déterminer les volumes des blocs

TURNELAX	General	Joint Ori	entations loint Pr	Input Data	? . >
Trend:	Joint O	rientation	is	General Joint Orientations Joint Properties	• - •
Tunne	Joir 1	nt Dip 60	Dip Direction 30 J	Joint Properties 1 Name: Joint Properties 1	
Design Fac Design F	2	60 60	150 J 270 J	Joint Properties 2 Joint Properties 3 Shear Strength Model: Mohr-Coulomb $\checkmark \tau = c' + \sigma'_n \tan \phi'$ Phi: 30 ° Tensile Strength: 0 t/m2	1/2
Rock: Water:	Joint C	X	ns	Cohesion: 0 t/m2 Water Pressure Joint Structure Constant Continuity: Infinite	~
	1	~ a	and 2 🗸	Pressure: 0 t/m2 Waviness: 0 ° = [average angle] - [minimum and ↓	ngle]

- p.1 Le comportement d'un massif rocheux
- p.2 Les discontinuités
- ^{p.3} Stabilité des blocs et dièdres Boulonnage
- p.4 Caractéristiques mécaniques du massif rocheux

4.1 Paramètres caractéristiques

- 4.2 Résistance d'un massif rocheux
- 4.3 Déformabilité d'un massif rocheux

4\ Caractéristiques mécaniques du massif rocheux \

4.1 – Paramètres caractéristiques du massif rocheux

École des Ponts ParisTech

Indice de fracturation : ID, RQD

Degrés d'altération

- Rocher sain
- > Altération limitée aux surfaces de discontinuités principales : Sain dans la masse
- > Altération faible dans la masse rocheuse mais bien développée sur les discontinuités.
- > Altération bien visible dans toute la masse rocheuse mais matériau non friable.
- > Forte altération dans toute la masse rocheuse.
- Roche complètement décomposée : la texture et les fissures importantes sont toujours visibles.
- **Roche complètement décomposée : texture et fissuration non reconnaissables.**

Indice de continuité du massif : ICM

L'indice ICM est définit par le rapport de la vitesse Vp_M des ondes P mesurée sur une base

de longueur L (longueurs les plus courantes des bases de sismique réfraction : 60 m, 120 m 240 m), à la vitesse Vp mesurée sur un échantillon.

$$CM = Vp_M / Vp$$

VALEUR DE IC _M	TERME DESCRIPTIF DE CONTINUITE DU MASSIF
> 90 %	Continuité du massif très élevée
. 90 % à 75 %	Continuité du massif élevée
75 % à 50 %	Continuité du massif moyenne
50 % à 25 %	Continuité du massif faible
< 25 %	Continuité du massif très faible

4\ Caractéristiques mécaniques du massif rocheux \

4.1 – Paramètres caractéristiques du massif rocheux

Paramètres du projet :

- Individualisation de sous ensembles (tronçons) homogènes
 - ✓ caractéristiques mécaniques du matériau (en conservant une pétrographie identique) ;
 - ✓ degré d'altération ;
 - ✓ conditions hydrogéologiques ;
 - ✓ épaisseur de la couverture ;
 - ✓ densité de discontinuités ;
 - ✓ autres.....
- Caractérisation géomécanique de chaque tronçon :
 - ✓ Matrice rocheuse
 - ✓ Identification, Perméabilité
 - ✓ Caractéristiques mécaniques : module de Young E, coefficient de Poisson ν , potentiel de gonflement σ g, Cg, résistance à la compression simple (Rc), résistance à la traction (Rtb) etc. cohésion C et angle de frottement ϕ .
 - ✓ Discontinuités :
 - Densité, RQD, ID, etc.
 - Orientation
 - Espacement, Extension
 - Rugosité et l'ondulation des surfaces, l'altération des épontes, l'ouverture, le remplissage et la présence d'eau dans le massif rocheux

- Définition du problème
 - Evaluer la résistance ultime d'un massif rocheux à l'échelle d'un ouvrage souterrain est une tâche très délicate.
 - ✓ Aucun essai in situ, sinon un essai de rupture en vraie grandeur, ne peut fournir de résultat exploitable.
 - Dans ces conditions, la seule approche consiste à minorer les propriétés de la matrice rocheuse, mesurée sur échantillons, en fonction de la fracturation du massif rocheux.

Utilisation des classifications du massif rocheux

- ✓ RMR de Bieniawski (Rock Mass rating) variant de 0 à 100
 - A1 : Strength of intact rock material ;
 - A2 : Drill core quality ;
 - A3 : Spacing of discontinuities ;
 - A4 : Conditions of discontinuities : extension, ouverture, rugosité, remplissage et altération des épontes ;
 - A5 : Groundwater conditions
 - - B : Adjustement for joint orientation : azimut et pendage des discontinuités par rapport à l'orientation de l'ouvrage souterrain.
- ✓ Q de Barton variant de 0,001 à 1000
 - RQD : Rock Quality Designation, suivant la définition de D. Deere (1964) ;
 - Jm : le nombre de familles de joints exprimés ;
 - Jr : la rugosité des joints (on retient le joint le plus défavorable) ;
 - Ja : le degré d'altération des joints ou de leur remplissage (on retient le joint le plus altéré) ;
 - Jw : les arrivées d'eau potentielles (débit et pression) ;
 - SRF : "Stress Reduction Factor" qualifiant les conditions de contraintes en place conditionnées par l'état de contrainte tectonique

Utilisation des classifications du massif rocheux

✓ GSI de Hoek (Geological Strength Index) ou RMR'.

Il est calculé comme le RMR pour les 4 premiers critères :

- ✓ Résistance,
- ✓ RQD,
- Espacements des joints,
- ✓ Conditions de joints

mais en retenant systématiquement une valeur pour les critères suivants de :

- ✓ 15 pour l'eau (c'est le comportement du massif hors d'eau qui est considéré)
- ✓ une valeur de 0 pour la note d'ajustement relative à l'orientation des discontinuités

- Critère de rupture : roche intacte massif rocheux fracturé
 - Les travaux les plus importants dans ce domaine sont ceux de Hoek et Brown (synthétisés dans Hoek, Kaiser et Brown, 1997). Le critère de rupture adopté est un critère généralisé de la forme :

 $\sigma'_1 = \sigma'_3 + \sigma_c (m_b \sigma'_3 / \sigma'_c + s)^a$

- m_b = m_i Constante caractéristique de la roche intacte.
 Des relations entre mb et mi sont obtenues par essais triaxiaux.
 Le tableau suivant présente des valeurs moyennes.
- s = 1
- $a = \frac{1}{2}$ Critère parabolique

Pour le massif rocheux Hoek et Brown proposent :

- Pour GSI > 25
 - $m_{\rm b} = m_{\rm i} \exp^{(\rm GSI 100)/28}$
 - - $s = exp^{(GSI 100)/9}$
 - a = 0,5
- Pour GSI < 25
 - s = 0
 - a = 0,65 (GSI/200)

Avec :

m_i caractéristique de la roche intacte

GSI, indice dérivant du RMR en considérant un massif sec et que les joints ont une orientation favorable

- Critère de rupture : roche intacte – massif rocheux fracturé
 - ✓ Valeurs de m_i

Rock	Class	Group	Texture					
type			Course	Medium	Fine	Very fine		
	Clastic		Conglomerate (22)	Sandstone 19	Siltstone 9	Claystone 4		
	Clastic			← Greywacke → (18)				
ARY		Oranaia		< Ch	alk ———> 7			
MENT		Organic		← Co (8-	21)	Е		
SEDI	Non-Clastic	Carbonate	Breccia (20)	Sparitic Limestone (10)	Micritic Limestone 8			
		Chemical		Gypstone 16	Anhydrire 13			
PHIC	Non Foliated		Marble 9	Hornfels (19)	Quartzite 24			
AMORI	Slightly foliated		Migmatite (30)	Amphibolite 31	Mylonites (6)			
MET	Foliated*		Gneiss 33	Schists (10)	Phyllites (10)	Slate 9		
	Light		Granite 33		Rhyolite (16)	Obsidian (19)		
			Granodiorite (30)		Dacite (17)			
EOUS			Diorite (28)		Andesite 19			
IGN	Da	ark	Gabbro 27	Dolerite (19)	Basalt (17)			
			Norite 22					
	Extrusive py	roclastic type	Agglomerate (20)	Breccia (18)	Tuff (15)			

Table 8.3: Values of the constant m_i for intact rock, by rock group. Note that values in parenthesis are estimates.

*These values are for intact rock specimens tested normal to foliation. The value of m_i will be significantly different if failure occurs along a foliation plane (Hoek, 1983).

École des Ponts ParisTech

 Critère de rupture : roche intacte – massif rocheux fracturé

> Tableau de détermination des paramètres : m_b, m_i, s, a

à partir du RMR

GENERAI o	LISED HOEK-BROWN CRITERION $T_1' = \sigma_3' + \sigma_c \left(m_b \frac{\sigma_3'}{\sigma_c} + s \right)^{a}$		ces	ained	altered	rfaces with ning angular	urfaces with
$\sigma_1' = major principal effective stress at failure \sigma_3' = minor principal effective stress at failure \sigma_c = uniaxial compressive strength of intact pieces of rock m_b, s and a are constants which depend onthe composition, structure and surfaceconditions of the rock massSTRUCTURE$		SURFACE CONDITION	VERY GOOD Very rough, unweathered surfa	GOOD Rough, slightly weathered, iron sta surfaces	FAIR Smooth, moderately weathered or surfaces	POOR Slickensided, highly weathered su compact coatings or fillings contai rock fragments	VERY POOR Slickensided, highly weathered su soft clay coatings or fillings
	BLOCKY -very well interlocked undisturbed rock mass consisting of cubical blocks formed by three orthogonal discontinuity sets	m,/m, s a E_ ⊽ GSI	0.60 0.190 0.5 75,000 0.2 85	0.40 0.062 0.5 40,000 0.2 75	0.26 0.015 0.5 20,000 0.25 62	0.16 0.003 0.5 9,000 0.25 48	0.08 0.0004 0.5 3,000 0.25 34
	VERY BLOCKY-interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets	m,/m, s a E GSI	0.40 0.062 0.5 40,000 0.2 75	0.29 0.021 0.5 24,000 0.25 65	0.16 0.003 0.5 9,000 0.25 48	0.11 0.001 0.5 5,000 0.25 38	0.07 0 0.53 2,500 0.3 25
	BLOCKY/SEAMY-folded and faulted with many intersecting discontinuities forming angular blocks	m,∕m, s a E GSI	0.24 0.012 0.5 18,000 0.25 60	0.17 0.004 0.5 10,000 0.25 50	0.12 0.001 0.5 6,000 0.25 40	0.08 0 0.5 3,000 0.3 30	0.06 0 0.55 2,000 0.3 20
	CRUSHED-poorly interlocked, heavily broken rock mass with a mixture of angular and rounded blocks	m,/m, s a E_ ∽ GSI	0.17 0.004 0.5 10,000 0.25 50	0.12 0.001 0.5 6,000 0.25 40	0.08 0 0.5 3,000 0.3 30	0.06 0 0.55 2,000 0.3 20	0.04 0 0.60 1,000 0.3 10

ENPC COTUN

Note 1: The in situ deformation modulus E_m is calculated from Equation 4.7 (page 47, Chapter 4). Units of E_m are MPa.

Critère de rupture : roche intacte – massif rocheux fracturé

Exemples de caractéristiques mécaniques

- Massif rocheux de qualité moyenne

Intact rock strength	σ _{ci}	80 MPa
Hoek-Brown constant	m_i	12
Geological Strength Index	GSI	50
Friction angle	φ'	33°
Cohesive strength	c'	3.5 MPa
Rock mass compressive strength	σ_{cm}	13 MPa
Rock mass tensile strength	σ_{tm}	-0.15
Deformation modulus	E_m	9000 MPa
Poisson's ratio	ν	0.25
Dilation angle	α	$\phi'/8 = 4^{\circ}$
Post-peak characteristics		1
Broken rock mass strength	Ofer	8 MPa
Deformation modulus	Efm	5000 MPa
	1	the second s

- Massif rocheux de mauvaise qualité

ci 20 MPa
8
SI 30
′ 24°
0.55 MPa
m 1.7 MPa
-0.01 MPa
m 1400 MPa
0.3
a zero
_{fm} 1400 MPa

- Massif rocheux de très bonne qualité

	•	
Intact rock strength	σ _{ci}	150 MPa
Hoek-Brown constant	mi	25
Geological Strength Index	GSI	75
Friction angle	φ'	46°
Cohesive strength	c'	13 MPa
Rock mass compressive strength	σ_{cm}	64.8 MPa
Rock mass tensile strength	σ_{tm}	-0.9 MPa
Deformation modulus	E_m	42000 MPa
Poisson's ratio	ν	0.2
Dilation angle	α	$\phi'/4 = 11.5^{\circ}$
Post-peak characteristics		1
Friction angle	Φ _f	38°
Cohesive strength	cí	0
Deformation modulus	E_{fm}	10000 MPa

ech

 Critère de rupture : roche intacte – massif rocheux fracturé

> Tableau d'estimation du GSI sur la base de la géologie et de la fracturation

	GEOLOGICAL STRENGTH INDEX From the letter codes describing the structure and surface conditions of the rock mass (from Table 4), pick the appropriate box in this chart. Estimate the average value of the Geological Strength Index (GSI) from the contours. Do not attempt to be too precise. Quoting a range of GSI from 36 to 42 is more realistic than stating that GSI = 38.	SURFACE CONDITIONS	G VERY GOOD D Very rough,fresh unweathered surfaces	B B B B Rough, slightly weathered, iron stained surfaces	EAIR BAIR Smooth, moderately weathered or altered surfaces	 POOR Slickensided, highly weathered surfaces with compact coatings or fillings of angular fragments 	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
ł	STRUCTURE		DECRE 7				
	BLOCKY - very well interlocked undisturbed rock mass consisting of cubical blocks formed by three orthogonal discontinuity sets	ECES	80 70				
	VERY BLOCKY - interlocked, partially disturbed rock mass with multifaceted angular blocks formed by four or more discontinuity sets	CKING OF ROCK PIE		60 50			
	BLOCKY/DISTURBED- folded and/or faulted with angular blocks formed by many intersecting discontinuity sets	ECREASING INTERLC			40	30	
	DISINTEGRATED - poorly inter- locked, heavily broken rock mass with a mixture or angular and rounded rock pieces	¤ ∳			//	2	10

• Mesures de déformabilité :

- Déformabilité par mesures indirectes :
 De type géophysique selon vitesse de propagation des ondes
- L'essai pressiométrique (norme P94-110-1&2) : L'essai pressiométrique doit être réservé exclusivement aux sols ou éventuellement à quelques matériaux "tendres" (craies, marnes) à la limite des sols et des roches
- L'essais dilatométrique en forage (norme P 94-443) : Il permet de mesurer la déformabilité du massif au moyen d'un dilatomètre. Cet essai permet de réaliser des mesures de fluage.
- ✓ Essais au vérin à plaque rigide
- ✓ Mesures directes sur ouvrages + rétro-analyses

- Déformabilité par mesures directes :
 - Essais au vérin à plaque rigide caractérise la déformabilité du massif par le module de déformation E_m déterminé par la tangente aux courbes « effort-déplacement » établies au cours de cycles de chargement successifs croissants.
 - ✓ Dimensions habituelles des plaques : 0,38 m à 0,60 m d'où valeurs de déformabilité du massif à l'échelle de quelques m³

✓ Essais au vérin à plaque rigide :

- Mesures sur ouvrages réels et estimation de la déformabilité par analyse en retour : Les analyses sont réalisées par modélisation 2D ou 3D avec calage des paramètres au moyen des mesures les plus courantes suivantes :
 - mesures du déplacement de la paroi de l'ouvrage (convergence) ;
 - mesures de déplacements de points situés dans le massif rocheux au moyen d'extensomètres en forages réalisés autour de l'ouvrage.
 - mesure de variations angulaires de points solidaires du massif rocheux (inclinométrie ou déflectométrie).

Déformabilité par mesures di

- Mesures sur ouvrages réels et estir analyse en retour : Les analyses sont réa paramètres au moyen des mesures les plus cour
- mesures du déplacement de la paroi de l'ouvrage
- mesures de déplacements de points situés dans forages réalisés autour de l'ouvrage.
- mesure de variations angulaires de points solidai déflectométrie).

Déformabilité

Massif : classifications géomécaniques sur E_m (GPa)

>30	Massif	très	peu	déformable	

10 – 30	Massif peu déformable
3 – 10	Massif moyennement déformable
1 - 3	Massif déformable
0,1 - 1	Massif très déformable
< 0,1	Massif extrêmement déformable

Effets différés (module à long terme) dus :

- ✓ Au comportement rhéologique de la matrice rocheuse, de type viscoélastique ou visco-élasto-plastique (cas de certaines roches : évaporites, marnes, …);
- Au dépassement du seuil de comportement élastique avec développement de zones plastiques au pourtour de l'excavation ;
- A des déformations différées liées à des phénomènes de consolidation consécutifs à la modification des écoulements, l'excavation jouant le rôle d'un drain.

$$E_{m}(t) = E_{mo} / [1 + \phi(t)]$$

- La fonction Φ(t) est une fonction monotone croissante comprise entre Φ(0) = 0 et Φ(∞) = α
- Roches de résistance faible à moyenne : $\alpha \approx 0.5$ à 1 (à valider par des données expérimentales)
- Roches de résistance plus élevée : $\alpha \approx 0,3$ à 0,5 (généralement adopté sans justification)

terrasol Tour Central Seine 42 - 52, quai de la Rapée 75583 Paris cedex 12

Tél +33 1 82 51 68 00 info@terrasol.com julian.marlinge@setec.com fabien.binet@setec.com www.terrasol.fr