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Preface

The 8th Innovations in Theoretical Computer Science (ITCS) Conference was held between
the 9th and 11th of January 2017 at the University of California at Berkeley, sponsored by
the Simons Institute for the Theory of Computing. The role of ITCS is to complement the
two major, prestigious, and very successful annual conferences of our field, STOC and FOCS
by enabling a dialogue that is crucial and beneficial for the unity, vigor, and future of our
field, and providing a forum for ideas that are novel and forward looking. ITCS conferences
are typically small (about a hundred participants) with a well attended single track.

171 papers were submitted to the 8th ITCS, and from these the program committee
selected for presentation at the conference and publication in these proceedings a total of 61
papers. Six papers were invited, meaning that they were of such quality that the program
committee either explicitly invited their authors to submit them, or realized in retrospect that
they should have done so: “Separators in region intersection graphs” by James R. Lee; “IRLS
and Slime Mold” by Damian Straszak and Nisheeth Vishnoi; “Network coding in undirected
graphs is either very helpful or not helpful at all” by Mark Braverman, Sumegha Garg and
Ariel Schvartzman; “Nash Social Welfare, Matrix Permanent, and Stable Polynomials” by
Nima Anari, Shayan Oveis Gharan, Amin Saberi and Mohit Singh; “Multiplayer parallel
repetition for expander games” by Irit Dinur, Prahladh Harsha, Rakesh Venkat and Henry
Yuen; and “The Journey from NP to TFNP Hardness” by Pavel Hubacek, Moni Naor and
Eylon Yogev. Other than that, there is no best paper award at ITCS. The best student paper
award was shared by these two papers: “Towards Hardness of Approximation for Polynomial
Time Problems” by Amir Abboud and Arturs Backurs and “Detecting communities is hard
and counting them is even harder,” by Aviad Rubinstein.

Many heartfelt thanks are due to the stellar and hard working program committee,
consisting of: Scott Aaronson, Elette Boyle, Mark Braverman, Alessandro Chiesa, Artur
Czumaj, Costis Daskalakis, Shafi Goldwasser, Anna Karlin, Jon Kleinberg, Swastik Kopparty,
Muthu Muthukrishnan, Noam Nisan, Georgios Piliouras, Toniann Pitassi, Tal Rabin, Alex-
ander Razborov, Tim Roughgarden, Aviad Rubinstein, Nikhil Srivastava, Chris Umans, Paul
Valiant, Virginia Vassilevska-Williams, Umesh Vazirani, Santosh Vempala, Mary Wootters,
Nir Yosef, Henry Yuen, and Lisa Zhang. Of these, Ale Chiesa and Umesh Vazirani were also
local organizers, and they worked very hard for the success of the conference. We are most
grateful to the Simons Institute for hosting and supporting the conference. Finally, many
thanks to all authors who submitted their work, and especially to all participants for making
this a truly memorable event.
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Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg∗ Sendhil Mullainathan† Manish Raghavan‡

Abstract

Recent discussion in the public sphere about algorithmic classification has involved tension between
competing notions of what it means for a probabilistic classification to be fair to different groups. We
formalize three fairness conditions that lie at the heart ofthese debates, and we prove that except in highly
constrained special cases, there is no method that can satisfy these three conditions simultaneously.
Moreover, even satisfying all three conditions approximately requires that the data lie in an approximate
version of one of the constrained special cases identified byour theorem. These results suggest some
of the ways in which key notions of fairness are incompatiblewith each other, and hence provide a
framework for thinking about the trade-offs between them.

1 Introduction

There are many settings in which a sequence of people comes before a decision-maker, who must make a
judgment about each based on some observable set of features. Across a range of applications, these judg-
ments are being carried out by an increasingly wide spectrumof approaches ranging from human expertise
to algorithmic and statistical frameworks, as well as various combinations of these approaches.

Along with these developments, a growing line of work has asked how we should reason about issues of bias
and discrimination in settings where these algorithmic andstatistical techniques, trained on large datasets
of past instances, play a significant role in the outcome. Letus consider three examples where such issues
arise, both to illustrate the range of relevant contexts, and to surface some of the challenges.

A set of example domains. First, at various points in the criminal justice system, including decisions
about bail, sentencing, or parole, an officer of the court mayuse quantitativerisk tools to assess a defendant’s
probability of recidivism — future arrest — based on their past history and other attributes. Several recent
analyses have asked whether such tools are mitigating or exacerbating the sources of bias in the criminal
justice system; in one widely-publicized report, Angwin etal. analyzed a commonly used statistical method
for assigning risk scores in the criminal justice system — the COMPAS risk tool — and argued that it was
biased against African-American defendants [2, 23]. One oftheir main contentions was that the tool’s errors
were asymmetric: African-American defendants were more likely to be incorrectly labeled as higher-risk
than they actually were, while white defendants were more likely to be incorrectly labeled as lower-risk than
they actually were. Subsequent analyses raised methodological objections to this report, and also observed
that despite the COMPAS risk tool’s errors, its estimates ofthe probability of recidivism are equally well
calibrated to the true outcomes for both African-American and white defendants [1, 10, 13, 17].

∗Cornell University
†Harvard University
‡Cornell University
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Second, in a very different domain, researchers have begun to analyze the ways in which different genders
and racial groups experience advertising and commercial content on the Internet differently [9, 26]. We
could ask, for example: if a male user and female user are equally interested in a particular product, does
it follow that they’re equally likely to be shown an ad for it?Sometimes this concern may have broader
implications, for example if women in aggregate are shown ads for lower-paying jobs. Other times, it may
represent a clash with a user’s leisure interests: if a female user interacting with an advertising platform is
interested in an activity that tends to have a male-dominated viewership, like professional football, is the
platform as likely to show her an ad for football as it is to show such an ad to an interested male user?

A third domain, again quite different from the previous two,is medical testing and diagnosis. Doctors
making decisions about a patient’s treatment may rely on tests providing probability estimates for different
diseases and conditions. Here too we can ask whether such decision-making is being applied uniformly
across different groups of patients [16, 27], and in particular how medical tests may play a differential role
for conditions that vary widely in frequency between these groups.

Providing guarantees for decision procedures. One can raise analogous questions in many other do-
mains of fundamental importance, including decisions about hiring, lending, or school admissions [24], but
we will focus on the three examples above for the purposes of this discussion. In these three example do-
mains, a few structural commonalities stand out. First, thealgorithmic estimates are often being used as
“input” to a larger framework that makes the overall decision — a risk score provided to a human expert in
the legal and medical instances, and the output of a machine-learning algorithm provided to a larger adver-
tising platform in the case of Internet ads. Second, the underlying task is generally about classifying whether
people possess some relevant property: recidivism, a medical condition, or interest in a product. We will
refer to people as beingpositive instances if they truly possess the property, andnegative instances if they
do not. Finally, the algorithmic estimates being provided for these questions are generally not pure yes-no
decisions, but instead probability estimates about whether people constitute positive or negative instances.

Let us suppose that we are concerned about how our decision procedure might operate differentially between
two groups of interest (such as African-American and white defendants, or male and female users of an
advertising system). What sorts of guarantees should we askfor as protection against potential bias?

A first basic goal in this literature is that the probability estimates provided by the algorithm should be
well-calibrated: if the algorithm identifies a set of people as having a probability z of constituting positive
instances, then approximately az fraction of this set should indeed be positive instances [8,14]. Moreover,
this condition should hold when applied separately in each group as well [13]. For example, if we are
thinking in terms of potential differences between outcomes for men and women, this means requiring that a
z fraction of men and az fraction of women assigned a probabilityz should possess the property in question.

A second goal focuses on the people who constitute positive instances (even if the algorithm can only
imperfectly recognize them): the average score received bypeople constituting positive instances should
be the same in each group. We could think of this asbalance for the positive class, since a violation of it
would mean that people constituting positive instances in one group receive consistently lower probability
estimates than people constituting positive instances in another group. In our initial criminal justice example,
for instance, one of the concerns raised was that white defendants who went on to commit future crimes
were assigned risk scores corresponding to lower probability estimates in aggregate; this is a violation of
the condition here. There is a completely analogous property with respect to negative instances, which we
could callbalance for the negative class. These balance conditions can be viewed as generalizationsof the
notions that both groups should have equal false negative and false positive rates.

It is important to note that balance for the positive and negative classes, as defined here, is distinct in
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crucial ways from the requirement that the average probability estimate globally overall members of the
two groups be equal. This latter global requirement is a version of statistical parity [12, 4, 21, 22]. In some
cases statistical parity is a central goal (and in some it is legally mandated), but the examples considered
so far suggest that classification and risk assessment are much broader activities where statistical parity is
often neither feasible nor desirable. Balance for the positive and negative classes, however, is a goal that can
be discussed independently of statistical parity, since these two balance conditions simply ask that once we
condition on the “correct” answer for a person, the chance ofmaking a mistake on them should not depend
on which group they belong to.

The present work: Trade-offs among the guarantees. Despite their different formulations, the calibra-
tion condition and the balance conditions for the positive and negative classes intuitively all seem to be
asking for variants of the same general goal — that our probability estimates should have the same effec-
tiveness regardless of group membership. One might therefore hope that it would be feasible to achieve all
of them simultaneously.

Our main result, however, is that these conditions are in general incompatible with each other; they can only
be simultaneously satisfied in certain highly constrained cases. Moreover, this incompatibility applies to
approximate versions of the conditions as well.

In the remainder of this section we formulate this main result precisely, as a theorem building on a model
that makes the discussion thus far more concrete.

1.1 Formulating the Goal

Let’s start with some basic definitions. As above, we have a collection of people each of whom constitutes
either a positive instance or a negative instance of the classification problem. We’ll say that thepositive
class consists of the people who constitute positive instances, and the negative class consists of the people
who constitute negative instances. For example, for criminal defendants, the positive class could consist of
those defendants who will be arrested again within some fixedtime window, and the negative class could
consist of those who will not. The positive and negative classes thus represent the “correct” answer to the
classification problem; our decision procedure does not know them, but is trying to estimate them.

Feature vectors. Each person has an associatedfeature vector σ, representing the data that we know
about them. Letpσ denote the fraction of people with feature vectorσ who belong to the positive class.
Conceptually, we will picture that while there is variationwithin the set of people who have feature vector
σ, this variation is invisible to whatever decision procedure we apply; all people with feature vectorσ are
indistinguishable to the procedure. Our model will assume that the valuepσ for eachσ is known to the
procedure.1

Groups. Each person also belongs to one of twogroups, labeled1 or 2, and we would like our decisions
to be unbiased with respect to the members of these two groups.2 In our examples, the two groups could
correspond to different races or genders, or other cases where we want to look for the possibility of bias
between them. The two groups have different distributions over feature vectors: a person of groupt has a
probabilityatσ of exhibiting the feature vectorσ. However, people of each group have the same probability

1Clearly the case in which the value ofpσ is unknown is an important version of the problem as well; however, since our main
results establish strong limitations on what is achievable, these limitations are only stronger because they apply even to the case of
knownpσ.

2We focus on the case of two groups for simplicity of exposition, but it is straightforward to extend all of our definitions to the
case of more than two groups.
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pσ of belonging to the positive class provided their feature vector isσ. In this respect,σ contains all the
relevant information available to us about the person’s future behavior; once we knowσ, we do not get any
additional information from knowing their group as well.3

Risk Assignments. We say that aninstance of our problem is specified by the parameters above: a feature
vector and a group for each person, with a valuepσ for each feature vector, and distributions{atσ} giving
the frequency of the feature vectors in each group.

Informally, risk assessments are ways of dividing people upinto sets based on their feature vectorsσ (po-
tentially using randomization), and then assigning each set a probability estimate that the people in this set
belong to the positive class. Thus, we define arisk assignment to consist of a set of “bins” (the sets), where
each bin is labeled with ascore vb that we intend to use as the probability for everyone assigned to bin b.
We then create a rule for assigning people to bins based on their feature vectorσ; we allow the rule to di-
vide people with a fixed feature vectorσ across multiple bins (reflecting the possible use of randomization).
Thus, the rule is specified by valuesXσb: a fractionXσb of all people with feature vectorσ are assigned
to bin b. Note that the rule does not have access to the groupt of the person being considered, only their
feature vectorσ. (As we will see, this does not mean that the rule is incapableof exhibiting bias between
the two groups.) In summary, a risk assignment is specified bya set of bins, a score for each bin, and values
Xσb that define a mapping from people with feature vectors to bins.

Fairness Properties for Risk Assignments. Within the model, we now express the three conditions dis-
cussed at the outset, each reflecting a potentially different notion of what it means for the risk assignment to
be “fair.”

(A) Calibration within groups requires that for each groupt, and each binb with associated scorevb, the
expected number of people from groupt in b who belong to the positive class should be avb fraction
of the expected number of people from groupt assigned tob.

(B) Balance for the negative class requires that the average score assigned to people of group 1who
belong to the negative class should be the same as the averagescore assigned to people of group 2
who belong to the negative class. In other words, the assignment of scores shouldn’t be systematically
more inaccurate for negative instances in one group than theother.

(C) Balance for the positive class symmetrically requires that the average score assigned to people of
group 1 who belong to the positive class should be the same as the average score assigned to people
of group 2 who belong to the positive class.

Why Do These Conditions Correspond to Notions of Fairness?.All of these are natural conditions to
impose on a risk assignment; and as indicated by the discussion above, all of them have been proposed as
versions of fairness. The first one essentially asks that thescores mean what they claim to mean, even when
considered separately in each group. In particular, suppose a set of scores lack the first property for some
bin b, and these scores are given to a decision-maker; then if people of two different groups both belong to
bin b, the decision-maker has a clear incentive to treat them differently, since the lack of calibration within
groups on binb means that these people have different aggregate probabilities of belonging to the positive
class. Another way of stating the property of calibration within groups is to say that, conditioned on the
bin to which an individual is assigned, the likelihood that the individual is a member of the positive class
is independent of the group to which the individual belongs.This means we are justified in treating people

3As we will discuss in more detail below, the assumption that the group provides no additional information beyondσ does not
restrict the generality of the model, since we can always consider instances in which people of different groups never have the same
feature vectorσ, and henceσ implicitly conveys perfect information about a person’s group.
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with the same score comparably with respect to the outcome, rather than treating people with the same score
differently based on the group they belong to.

The second and third ask that if two individuals in differentgroups exhibit comparable future behavior
(negative or positive), they should be treated comparably by the procedure. In other words, a violation of,
say, the second condition would correspond to the members ofthe negative class in one group receiving
consistently higher scores than the members of the negativeclass in the other group, despite the fact that the
members of the negative class in the higher-scoring group have done nothing to warrant these higher scores.

We can also interpret some of the prior work around our earlier examples through the lens of these condi-
tions. For example, in the analysis of the COMPAS risk tool for criminal defendants, the critique by Angwin
et al. focused on the risk tool’s violation of conditions (B)and (C); the counter-arguments established that
it satisfies condition (A). While it is clearly crucial for a risk tool to satisfy (A), it may still be important to
know that it violates (B) and (C). Similarly, to think in terms of the example of Internet advertising, with
male and female users as the two groups, condition (A) as before requires that our estimates of ad-click
probability mean the same thing in aggregate for men and women. Conditions (B) and (C) are distinct; con-
dition (C), for example, says that a female user who genuinely wants to see a given ad should be assigned
the same probability as a male user who wants to see the ad.

1.2 Determining What is Achievable: A Characterization Theorem

When can conditions (A), (B), and (C) be simultaneously achieved? We begin with two simple cases where
it’s possible.

• Perfect prediction. Suppose that for each feature vectorσ, we have eitherpσ = 0 or pσ = 1. This
means that we can achieve perfect prediction, since we know each person’s class label (positive or
negative) for certain. In this case, we can assign all feature vectorsσ with pσ = 0 to a binb with score
vb = 0, and allσ with pσ = 1 to a binb′ with scorevb′ = 1. It is easy to check that all three of the
conditions (A), (B), and (C) are satisfied by this risk assignment.

• Equal base rates. Suppose, alternately, that the two groups have the same fraction of members in the
positive class; that is, the average value ofpσ is the same for the members of group 1 and group 2. (We
can refer to this as thebase rate of the group with respect to the classification problem.) In this case,
we can create a single binb with score equal to this average value ofpσ, and we can assign everyone
to bin b. While this is not a particularly informative risk assignment, it is again easy to check that it
satisfies fairness conditions (A), (B), and (C).

Our first main result establishes that these are in fact the only two cases in which a risk assignment can
achieve all three fairness guarantees simultaneously.

Theorem 1.1 Consider an instance of the problem in which there is a risk assignment satisfying fairness
conditions (A), (B), and (C). Then the instance must either allow for perfect prediction (with pσ equal to 0
or 1 for all σ) or have equal base rates.

Thus, in every instance that is more complex than the two cases noted above, there will be some natural
fairness condition that is violated by any risk assignment.Moreover, note that this result applies regardless
of how the risk assignment is computed; since our framework considers risk assignments to be arbitrary
functions from feature vectors to bins labeled with probability estimates, it applies independently of the
method — algorithmic or otherwise — that is used to constructthe risk assignment.
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The conclusions of the first theorem can be relaxed in a continuous fashion when the fairness conditions are
only approximate. In particular, for anyε > 0 we can defineε-approximate versions of each of conditions
(A), (B), and (C) (specified precisely in the next section), each of which requires that the corresponding
equalities between groups hold only to within an error ofε. For anyδ > 0, we can also define aδ-
approximate version of the equal base rates condition (requiring that the base rates of the two groups be
within an additiveδ of each other) and aδ-approximate version of the perfect prediction condition (requiring
that in each group, the average of the expected scores assigned to members of the positive class is at least
1 − δ; by the calibration condition, this can be shown to imply a complementary bound on the average of
the expected scores assigned to members of the negative class).

In these terms, our approximate version of Theorem 1.1 is thefollowing.

Theorem 1.2 There is a continuous function f , with f(x) going to 0 as x goes to 0, so that the following
holds. For all ε > 0, and any instance of the problem with a risk assignment satisfying the ε-approximate
versions of fairness conditions (A), (B), and (C), the instance must satisfy either the f(ε)-approximate
version of perfect prediction or the f(ε)-approximate version of equal base rates.

Thus, anything that approximately satisfies the fairness constraints must approximately look like one of the
two simple cases identified above.

Finally, in connection to Theorem 1.1, we note that when the two groups have equal base rates, then one
can ask for the most accurate risk assignment that satisfies all three fairness conditions (A), (B), and (C)
simultaneously. Since the risk assignment that gives the same score to everyone satisfies the three conditions,
we know that at least one such risk assignment exists; hence,it is natural to seek to optimize over the set of
all such assignments. We consider this algorithmic question in the final technical section of the paper.

To reflect a bit further on our main theorems and what they suggest, we note that our intention in the present
work isn’t to make a recommendation on how conflicts between different definitions of fairness should be
handled. Nor is our intention to analyze which definitions offairness are violated in particular applications
or datasets. Rather, our point is to establish certain unavoidable trade-offs between the definitions, regardless
of the specific context and regardless of the method used to compute risk scores. Since each of the definitions
reflect (and have been proposed as) natural notions of what itshould mean for a risk score to be fair, these
trade-offs suggest a striking implication: that outside ofnarrowly delineated cases, any assignment of risk
scores can in principle be subject to natural criticisms on the grounds of bias. This is equally true whether
the risk score is determined by an algorithm or by a system of human decision-makers.

Special Cases of the Model. Our main results, which place strong restrictions on when the three fairness
conditions can be simultaneously satisfied, have more powerwhen the underlying model of the input is more
general, since it means that the restrictions implied by thetheorems apply in greater generality. However,
it is also useful to note certain special cases of our model, obtained by limiting the flexibility of certain
parameters in intuitive ways. The point is that our results apply a fortiori to these more limited special
cases.

First, we have already observed one natural special case of our model: cases in which, for each feature
vectorσ, only members of one group (but not the other) can exhibitσ. This means thatσ contains perfect
information about group membership, and so it corresponds to instances in which risk assignments would
have the potential to use knowledge of an individual’s groupmembership. Note that we can convert any
instance of our problem into a new instance that belongs to this special case as follows. For each feature
vectorσ, we create two new feature vectorsσ(1) andσ(2); then, for each member of group1 who had feature
vectorσ, we assign themσ(1), and for each member of group2 who had feature vectorσ, we assign them
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σ(2). The resulting instance has the property that each feature vector is associated with members of only one
group, but it preserves the essential aspects of the original instance in other respects.

Second, we allow risk assignments in our model to split people with a given feature vectorσ over several
bins. Our results also therefore apply to the natural special case of the model withintegral risk assignments,
in which all people with a given featureσ must go to the same bin.

Third, our model is a generalization of binary classification, which only allows for 2 bins. Note that although
binary classification does not explicitly assign scores, wecan consider the probability that an individual
belongs to the positive class given that they were assigned to a specific bin to be the score for that bin. Thus,
our results hold in the traditional binary classification setting as well.

Data-Generating Processes. Finally, there is the question of where the data in an instance of our problem
comes from. Our results do not assume any particular processfor generating the positive/negative class
labels, feature vectors, and group memberships; we simply assume that we are given such a collection of
values (regardless of where they came from), and then our results address the existence or non-existence of
certain risk assignments for these values.

This increases the generality of our results, since it meansthat they apply to any process that produces data
of the form described by our model. To give an example of a natural generative model that would produce
instances with the structure that we need, one could assume that each individual starts with a “hidden” class
label (positive or negative), and a feature vectorσ is then probabilistically generated for this individual from
a distribution that can depend on their class label and theirgroup membership. (If feature vectors produced
for the two groups are disjoint from one another, then the requirement that the value ofpσ is independent of
group membership givenσ necessarily holds.) Since a process with this structure produces instances from
our model, our results apply to data that arises from such a generative process.

It is also interesting to note that the basic set-up of our model, with the population divided across a set
of feature vectors for which race provides no additional information, is in fact a very close match to the
information one gets from the output of a well-calibrated risk tool. In this sense, one setting for our model
would be the problem of applying post-processing to the output of such a risk tool to ensure additional
fairness guarantees. Indeed, since much of the recent controversy about fair risk scores has involved risk
tools that are well-calibrated but lack the other fairness conditions we consider, such an interpretation of the
model could be a useful way to think about how one might work with these tools in the context of a broader
system.

1.3 Further Related Work

Mounting concern over discrimination in machine learning has led to a large body of new work seeking
to better understand and prevent it. Barocas and Selbst survey a range of ways in which data-analysis
algorithms can lead to discriminatory outcomes [3], and review articles by Romei and Ruggieri [25] and
Zliobaite [30] survey data-analytic and algorithmic methods for measuring discrimination.

Kamiran and Calders [21] and Hajian and Domingo-Ferrer [18]seek to modify datasets to remove any
information that might permit discrimination. Similarly,Zemel et al. look to learn fair intermediate repre-
sentations of data while preserving information needed forclassification [29]. Joseph et al. consider how
fairness issues can arise during the process of learning, modeling this using a multi-armed bandit framework
[20].
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One common notion of fairness is “statistical parity” – equal fractions of each group should be treated as
belonging to the positive class [4, 21, 22]. Recent papers have also considered approximate relaxations of
statistical parity, motivated by the formulation ofdisparate impact in the U.S. legal code [12, 28]. Work in
these directions has developed learning algorithms that penalize violations of statistical parity [4, 22]. As
noted above, we consider definitions other than statisticalparity that take into account the class membership
(positive or negative) of the people being classified.

Dwork et al. propose a framework based on a task-specific externally defined similarity metric between
individuals, seeking to achieve fairness through the goal that “similar people [be] treated similarly” [11].
They strive towards individual fairness, which is a stronger notion of fairness than the definitions we use;
however, our approach shares some of the underlying motivation (though not the specifics) in that our
balance conditions for the positive and negative classes also reflect the notion that similar people should be
treated similarly.

Much of the applied work on risk scores, as noted above, focuses on calibration as a central goal [8, 10, 13].
In particular, responding to the criticism of their risk scores as displaying asymmetric errors for different
groups, Dietrich et al. note that empirically, both in theirdomain and in similar settings, it is typically
difficult to achieve symmetry in the error rates across groups when base rates differ significantly. Our
formulation of the balance conditions for the positive and negative classes, and our result showing the
incompatibility of these conditions with calibration, provides a theoretical basis for such observations.

In recent work concurrent with ours, Hardt et al. consider the natural analogues of our conditions (B) and (C),
balance for the negative and positive classes, in the case ofclassifiers that output binary “yes/no” predictions
rather than real-valued scores as in our case [19]. Since they do not require an analogue of calibration, it
is possible to satisfy the two balance constraints simultaneously, and they provide methods for optimizing
performance measures of the prediction rule subject to satisfying these two constraints. Also concurrent with
our work and that of Hardt et al., Chouldechova [5] and Corbett-Davies et al. [6] (and see also [7]) consider
binary prediction subject to these same analogues of the balance conditions for the negative and positive
classes, together with a form of calibration adapted to binary prediction (requiring that for all people given
a positive label, the same fraction of people in each group should truly belong to the positive class). Among
other results, they show that no classification rule satisfying the required constraints is possible. Finally, a
recent paper of Friedler et al. [15] defines two axiomatic properties of feature generation and shows that no
mechanism can be fair under these two properties.

2 The Characterization Theorems

Starting with the notation and definitions from the previoussection, we now give a proof of Theorem 1.1.

Informal overview. Let us begin with a brief overview of the proof, before going into a more detailed
version of it. For this discussion, letNt denote the number of people in groupt, andµt be the number of
people in groupt who belong to the positive class.

Roughly speaking, the proof proceeds in two steps. First, consider a single binb. By the calibration condi-
tion, the expected total score given to the group-t people in binb is equal to the expected number of group-t
people in binb who belong to the positive class. Summing over all bins, we find that the total score given
to all people in groupt (that is, the sum of the scores received by everyone in groupt) is equal to the total
number of people in the positive class in groupt, which isµt.
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Now, letx be the average score given to a member of the negative class, and lety be the average score given
to a member of the positive class. By the balance conditions for the negative and positive classes, these
values ofx andy are the same for both groups.

Given the values ofx andy, the total number of people in the positive classµt, and the total score given out
to people in groupt — which, as argued above, is alsoµt — we can write the total score as

(N − µt)x+ µty = µt.

This defines a line for each groupt in the two variablesx andy, and hence we obtain a system of two linear
equations (one for each group) in the unknownsx andy.

If all three conditions — calibration, and balance for the two classes — are to be satisfied, then we must be
at a set of parameters that represents a solution to the system of two equations. If the base rates are equal,
thenµ1 = µ2 and hence the two lines are the same; in this case, the system of equations is satisfied by any
choice ofx andy. If the base rates are not equal, then the two lines are distinct, and they intersect only at the
point (x, y) = (0, 1), which implies perfect prediction — an average score of0 for members of the negative
class and1 for members of the positive class. Thus, the three conditions can be simultaneously satisfied if
and only if we have equal base rates or perfect prediction.

This concludes the overview of the proof; in the remainder ofthe section we describe the argument at a more
detailed level.

Definitions and notation. Recall from our notation in the previous section that anatσ fraction of the
people in groupt have feature vectorσ; we thus writentσ = atσNt for the number of people in groupt with
feature vectorσ. Many of the components of the risk assignment and its evaluation can be written in terms
of operations on a set of underlying matrices and vectors, which we begin by specifying.

• First, let|σ| denote the number of feature vectors in the instance, and letp ∈ R
|σ| be a vector indexed

by the possible feature vectors, with the coordinate in position σ equal topσ. For groupt, letnt ∈ R
|σ|

also be a vector indexed by the possible feature vectors, with the coordinate in positionσ equal tontσ.
Finally, it will be useful to have a representation ofp as a diagonal matrix; thus, letP be a|σ| × |σ|
diagonal matrix withPσσ = pσ.

• We now specify a risk assignment as follows. The risk assignment involves a set ofB bins with
associated scores; letv ∈ R

B be a vector indexed by the bins, with the coordinate in position b equal
to the scorevb of bin b. Let V be a diagonal matrix version ofv: it is aB × B matrix withVbb = vb.
Finally, let X be the|σ| × B matrix of Xσb values, specifying the fraction of people with feature
vectorσ who get mapped to binb under the assignment procedure.

There is an important point to note about theXσb values. If all of them are equal to0 or 1, this corresponds
to a procedure in which all people with the same feature vector σ get assigned to the same bin. When some
of theXσb values are not equal to0 or 1, the people with vectorσ are being divided among multiple bins.
In this case, there is an implicit randomization taking place with respect to the positive and negative classes,
and with respect to the two groups, which we can think of as follows. Since the procedure cannot distinguish
among people with vectorσ, in the case that it distributes these people across multiple bins, the subset of
people with vectorσ who belong to the positive and negative classes, and to the two groups, are divided
up randomly across these bins in proportions correspondingto Xσb. In particular, if there arentσ group-t
people with vectorσ, the expected number of these people who belong to the positive class and are assigned
to bin b is ntσpσXσb.

Let us now proceed with the proof of Theorem 1.1, starting with the assumption that our risk assignment
satisfies conditions (A), (B), and (C).
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Calibration within groups. We begin by working out some useful expressions in terms of the matrices
and vectors defined above. We observe thatn⊤

t P is a vector inR|σ| whose coordinate corresponding to
feature vectorσ equals the number of people in groupt who have feature vectorσ and belong to the positive
class.n⊤

t X is a vector inRB whose coordinate corresponding to binb equals the expected number of people
in groupt assigned to binb.

By further multiplying these vectors on the right, we get additional useful quantities. Here are two in
particular:

• n⊤
t XV is a vector inRB whose coordinate corresponding to binb equals the expected sum of the

scores assigned to all group-t people in binb. That is, using the subscriptb to denote the coordinate
corresponding to binb, we can write(n⊤

t XV )b = vb(n
⊤
t X)b by the definition of the diagonal matrix

V .

• n⊤
t PX is a vector inRB whose coordinate corresponding to binb equals the expected number of

group-t people in the positive class who are placed in binb.

Now, condition (A), that the risk assignment is calibrated within groups, implies that the two vectors above
are equal coordinate-wise, and so we have the following equation for all t:

n⊤
t PX = n⊤

t XV (1)

Calibration condition (A) also has an implication for the total score received by all people in groupt.
Suppose we multiply the two sides of (1) on the right by the vector e ∈ R

B whose coordinates are all1,
obtaining

n⊤
t PXe = n⊤

t XV e. (2)

The left-hand-side is the number of group-t people in the positive class. The right-hand-side, which wecan
also write asn⊤

t Xv, is equal to the sum of the expected scores received by all group-t people. These two
quantities are thus the same, and we write their common valueasµt.

Fairness to the positive and negative classes.We now want to write down vector equations corresponding
to the fairness conditions (B) and (C) for the negative and positive classes. First, recall that for theB-
dimensional vectorn⊤

t PX, the coordinate corresponding to binb equals the expected number of group-t
people in the positive class who are placed in binb. Thus, to compute the sum of the expected scores
received by all group-t people in the positive class, we simply need to take the innerproduct with the vector
v, yieldingn⊤

t PXv. Sinceµt is the total number of group-t people in the positive class, the average of the

expected scores received by a group-t person in the positive class is the ratio
1

µt
n⊤
t PXv. Thus, condition

(C), that members of the positive class should receive the same average score in each group, can be written

1

µ1
n⊤
1 PXv =

1

µ2
n⊤
2 PXv (3)

Applying strictly analogous reasoning but to the fractions1 − pσ of people in the negative class, we can
write condition (B), that members of the negative class should receive the same average score in each group,
as

1

N1 − µ1
n⊤
1 (I − P )Xv =

1

N2 − µ2
n⊤
2 (I − P )Xv (4)
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Using (1), we can rewrite (3) to get

1

µ1
n⊤
1 XV v =

1

µ2
n⊤
2 XV v (5)

Similarly, we can rewrite (4) as

1

N1 − µ1
(µ1 − n⊤

1 XV v) =
1

N2 − µ2
(µ2 − n⊤

2 XV v) (6)

The portion of the score received by the positive class.We think of the ratios on the two sides of (3),
and equivalently (5), as the average of the expected scores received by a member of the positive class in
groupt: the numerator is the sum of the expected scores received by the members of the positive class, and
the denominator is the size of the positive class. Let us denote this fraction byγt; we note that this is the
quantityy used in the informal overview of the proof at the start of the section. By (2), we can alternately
think of the denominator as the sum of the expected scores received by all group-t people. Hence, the two
sides of (3) and (5) can be viewed as representing the ratio ofthe sum of the expected scores in the positive
class of groupt to the sum of the expected scores in groupt as a whole. (3) requires thatγ1 = γ2; let us
denote this common value byγ.

Now, we observe thatγ = 1 corresponds to a case in which the sum of the expected scores in just the
positive class of groupt is equal to the sum of the expected scores in all of groupt. In this case, it must
be that all members of the negative class are assigned to binsof score0. If any members of the positive
class were assigned to a bin of score0, this would violate the calibration condition (A); hence all members
of the positive class are assigned to bins of positive score.Moreover, these bins of positive score contain
no members of the negative class (since they’ve all been assigned to bins of score0), and so again by the
calibration condition (A), the members of the positive class are all assigned to bins of score1. Finally,
applying the calibration condition once more, it follows that the members of the negative class all have
feature vectorsσ with pσ = 0 and the members of the positive class all have feature vectorsσ with pσ = 1.
Hence, whenγ = 1 we have perfect prediction.

Finally, we use our definition ofγt as
1

µt
n⊤
t XV v, and the fact thatγ1 = γ2 = γ to write (6) as

1

N1 − µ1
(µ1 − γµ1) =

1

N2 − µ2
(µ2 − γµ2)

1

N1 − µ1
µ1(1− γ) =

1

N2 − µ2
µ2(1− γ)

µ1/N1

1− µ1/N1
(1− γ) =

µ2/N2

1− µ2/N2
(1− γ)

Now, this last equality implies that one of two things must bethe case. Either1 − γ = 0, in which case
γ = 1 and we have perfect prediction; or

µ1/N1

1− µ1/N1
=

µ2/N2

1− µ2/N2
,

in which caseµ1/N1 = µ2/N2 and we have equal base rates. This completes the proof of Theorem 1.1.

Some Comments on the Connection to Statistical Parity. Earlier we noted that conditions (B) and (C)
— the balance conditions for the positive and negative classes — are quite different from the requirement of
statistical parity, which asserts that the average of the scores overall members of each group be the same.
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When the two groups have equal base rates, then the risk assignment that gives the same score to everyone
in the population achieves statistical parity along with conditions (A), (B), and (C). But when the two
groups do not have equal base rates, it is immediate to show that statistical parity is inconsistent with both
the calibration condition (A) and with the conjunction of the two balance conditions (B) and (C). To see
the inconsistency of statistical parity with the calibration condition, we take Equation (1) from the proof
above, sum the coordinates of the vectors on both sides, and divide byNt, the number of people in groupt.
Statistical parity requires that the right-hand sides of the resulting equation be the same fort = 1, 2, while
the assumption that the two groups have unequal base rates implies that the left-hand sides of the equation
must be different fort = 1, 2. To see the inconsistency of statistical parity with the twobalance conditions
(B) and (C), we simply observe that if the average score assigned to the positive class and to the negative
class are the same in the two groups, then the average of the scores over all members of the two groups
cannot be the same provided they do not contain the same proportion of positive-class and negative-class
members.

3 The Approximate Theorem

In this section we prove Theorem 1.2. First, we must first givea precise specification of the approximate
fairness conditions:

(1− ε)[n⊤
t XV ]b ≤ [n⊤

t PX]b ≤ (1− ε)[n⊤
t XV ]b (A’)

(1− ε)

(

1

N2 − µ2

)

n⊤
t (I − P )Xv ≤

(

1

N1 − µ1

)

n⊤
t (I − P )Xv ≤ (1 + ε)

(

1

N2 − µ2

)

n⊤
t (I − P )Xv

(B’)

(1− ε)

(

1

µ2

)

n⊤
t PXv ≤

(

1

µ1

)

n⊤
t PXv ≤ (1 + ε)

(

1

µ2

)

n⊤
t PXv (C’)

For (B’) and (C’), we also require that these hold whenµ1 andµ2 are interchanged.

We also specify the approximate versions of perfect prediction and equal base rates in terms off(ε), which
is a function that goes to 0 asε goes to 0.

• Approximate perfect prediction. γ1 ≥ 1− f(ε) andγ2 ≥ 1− f(ε)

• Approximately equal base rates. |µ1/N1 − µ2/N2| ≤ f(ε)

A brief overview of the proof of Theorem 1.2 is as follows. It proceeds by first establishing an approximate
form of Equation (1) above, which implies that the total expected score assigned in each group is approxi-
mately equal to the total size of the positive class. This in turn makes it possible to formulate approximate
forms of Equations (3) and (4). When the base rates are close together, the approximation is too loose to
derive bounds on the predictive power; but this is okay sincein this case we have approximately equal base
rates. Otherwise, when the base rates differ significantly,we show that most of the expected score must be
assigned to the positive class, giving us approximately perfect prediction.

The remainder of this section provides the full details of the proof.

Total scores and the number of people in the positive class.First, we will show that the total score for
each group is approximatelyµt, the number of people in the positive class. Defineµ̂t = n⊤

t Xv. Using (A’),
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we have

µ̂t = n⊤
t Xv

= n⊤
t XV e

=

B
∑

b=1

[n⊤
t PX]b

≤ (1 + ε)
B
∑

b=1

[n⊤
t PX]b

= (1 + ε)n⊤
t PXe

= (1 + ε)µt

Similarly, we can lower bound̂µt as

µ̂t =

B
∑

b=1

[n⊤
t PX]b

≥ (1− ε)

B
∑

b=1

[n⊤
t PX]b

= (1− ε)µt

Combining these, we have
(1− ε)µt ≤ µ̂t ≤ (1 + ε)µt. (7)

The portion of the score received by the positive class.We can use (C’) to show thatγ1 ≈ γ2. Recall
thatγt, the average of the expected scores assigned to members of the positive class in groupt, is defined as
γt =

1
µt
ntPXv. Then, it follows trivially from (C’) that

(1− ε)γ2 ≤ γ1 ≤ (1 + ε)γ2. (8)

The relationship between the base rates. We can apply this to (B’) to relateµ1 andµ2, using the obser-
vation that the score not received by people of the positive class must fall instead to people of the negative
class. Examining the left inequality of (B’), we have

(1− ε)

(

1

N2 − µ2

)

n⊤
t (I − P )Xv = (1− ε)

(

1

N2 − µ2

)

(n⊤
t Xv − n⊤

t PXv)

= (1− ε)

(

1

N2 − µ2

)

(µ̂2 − γ2µ2)

≥ (1− ε)

(

1

N2 − µ2

)

((1− ε)µ2 − γ2µt)

= (1− ε)

(

µ2

N2 − µ2

)

(1− ε− γ2)

≥ (1− ε)

(

µ2

N2 − µ2

)(

1− ε− γ1
1− ε

)

= (1− 2ε+ ε2 − γ1)

(

µ2

N2 − µ2

)
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Thus, the left inequality of (B’) becomes

(1− 2ε+ ε2 − γ1)

(

µ2

N2 − µ2

)

≤
(

1

N1 − µ1

)

n⊤
t (I − P )Xv (9)

By definition,µ̂1 = n⊤
t Xv andγtµt = n⊤

t PXv, so this becomes

(1− 2ε+ ε2 − γ1)

(

µ2

N2 − µ2

)

≤
(

1

N1 − µ1

)

(µ̂1 − γ1µ1) (10)

If the base rates differ. Let ρ1 andρ2 be the respective base rates, i.e.ρ1 = µ1/N1 andρ2 = µ2/N2.
Assume thatρ1 ≤ ρ2 (otherwise we can switchµ1 andµ2 in the above analysis), and assume towards
contradiction that the base rates differ by at least

√
ε, meaningρ1 +

√
ε < ρ2. Using (10),

ρ1 +
√
ε

1− ρ1 =
√
ε
≤ ρ2

1− ρ2

≤
(

1 + ε− γ1
1− 2ε+ ε2 − γ1

)(

ρ1
1− ρ1

)

(ρ1 +
√
ε)(1− ρ1)(1− 2ε+ ε2 − γ1) ≤ ρ1(1− ρ1 −

√
ε)(1 + ε− γ1)

(ρ1 +
√
ε)(1 − ρ1)(1− 2ε) − ρ1(1− ρ1 −

√
ε)(1 + ε) ≤ γ1

[

(ρ1 +
√
ε)(1 − ρ1)− ρ1(1− ρ1 −

√
ε)
]

ρ1[(1 − ρ1)(1− 2ε) − (1− ρ1 −
√
ε)(1 + ε)] +

√
ε(1− ρ1)(1− 2ε) ≤ γ1[

√
ε(1− ρ1) +

√
ερ1]

ρ1(−2ε+ 2ερ1 − ε+ ερ1 +
√
ε+ ε

√
ε) +

√
ε(1− 2ε − ρ1 + 2ερ1) ≤ γ1

√
ε

ρ1(−3ε+ 3ερ1 +
√
ε+ ε

√
ε−

√
ε+ 2ε

√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

ερ1(−3 + 3ρ1 + 3
√
ε) +

√
ε(1− 2ε) ≤ γ1

√
ε

3ερ1(−1 + ρ1) +
√
ε(1− 2ε) ≤ γ1

√
ε

1− 2ε− 3
√
ερ1(1− ρ1) ≤ γ1

1−
√
ε

(

2
√
ε+

3

4

)

≤ γ1

Recall thatγ2 ≥ γ1(1− ε), so

γ2 ≥ (1− ε)γ1

≥ (1− ε)

(

1−
√
ε

(

2
√
ε+

3

4

))

≥ 1− ε−
√
ε

(

2
√
ε+

3

4

)

= 1−
√
ε

(

3
√
ε+

3

4

)

Let f(ε) =
√
εmax(1, 3

√
ε+ 3/4). Note that we assumed thatρ1 andρ2 differ by an additive

√
ε ≤ f(ε).

Therefore if theε-fairness conditions are met and the base rates are not within an additivef(ε), thenγ1 ≥
1− f(ε) andγ2 ≥ 1− f(ε). This completes the proof of Theorem 1.2.

4 Reducing Loss with Equal Base Rates

In a risk assignment, we would like as much of the score as possible to be assigned to members of the
positive class. With this in mind, if an individual receivesa score ofv, we define theirindividual loss to
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bev if they belong to the negative class, and1 − v if they belong to the positive class. The loss of the risk
assignment in groupt is then the sum of the expected individual losses to each member of groupt. In terms
of the matrix-vector products used in the proof of Theorem 1.1, one can show that the loss for groupt may
be written as

ℓt(X) = n⊤
t (I − P )Xv + (µt − n⊤

t PXv)

= 2(µt − n⊤
t PXv),

and the total loss is just the weighted sum of the losses for each group.

Now, let us say that afair assignment is one that satisfies our three conditions (A), (B), and (C). As noted
above, when the base rates in the two groups are equal, the setof fair assignments is non-empty, since the
calibrated risk assignment that places everyone in a singlebin is fair. We can therefore ask, in the case of
equal base rates, whether there exists a fair assignment whose loss is strictly less than that of the trivial
one-bin assignment. It is not hard to show that this is possible if and only if there is any assignment using
more than one bin; we will call such an assignment anon-trivial assignment.

Note that the assignment that minimizes loss is simply the one that assigns eachσ to a separate bin with
a score ofpσ, meaningX is the identity matrix. While this assignment, which we refer to as the identity
assignmentI, is well-calibrated, it may violate fairness conditions (B) and (C). It is not hard to show that
the loss for any other assignment is strictly greater than the loss forI. As a result, unless the identity
assignment happens to be fair, every fair assignment must have larger loss than that ofI, forcing a tradeoff
between performance and fairness.

4.1 Characterization of Well-Calibrated Solutions

To better understand the space of feasible solutions, suppose we drop the fairness conditions (B) and (C) for
now and study risk assignments that are simply well-calibrated, satisfying (A). As in the proof of Theorem
1.1, we writeγt for the average of the expected scores assigned to members ofthe positive class in groupt,
and we define thefairness difference to beγ1−γ2. If this is nonnegative, we say the risk assignmentweakly
favors group 1; if it is nonpositive, it weakly favors group 2. Sincea risk assignment is fair if and only if
γ1 = γ2, it is fair if and only if the fairness difference is 0.

We wish to characterize when non-trivial fair risk assignments are possible. First, we observe that without
the fairness requirements, the set of possible fairness differences under well-calibrated assignments is an
interval.

Lemma 4.1 If group 1 and group 2 have equal base rates, then for any two non-trivial well-calibrated
risk assignments with fairness differences d1 and d2 and for any d3 ∈ [d1, d2], there exists a non-trivial
well-calibrated risk assignment with fairness difference d3.

Proof: The basic idea is that we can effectively take convex combinations of well-calibrated assignments
to produce any well-calibrated assignment “in between” them. We carry this out as follows.

LetX(1) andX(2) be the allocation matrices for assignments with fairness differencesd1 andd2 respectively,
whered1 < d2. Chooseλ such thatλd1 + (1 − λ)d2 = d3, meaningλ = (d2 − d3)/(d2 − d1). Then,
X(3) = [λX(1) (1− λ)X(2)] is a nontrivial well-calibrated assignment with fairness differenced3.

First, we observe thatX(3) is a valid assignment because each row sums to 1 (meaning everyone from every
σ gets assigned to a bin), since each row ofλX(1) sums toλ and each row of(1− λ)X(2) sums to(1− λ).
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Moreover, it is nontrivial because every nonempty bin created byX(1) andX(2) is a nonempty bin under
X(3).

Let v(1) andv(2) be the respective bin labels for assignmentsX(1) andX(2). Definev(3) =

[

v(1)

v(2)

]

.

Finally, letV (3) = diag(v(3)). DefineV (1) andV (2) analogously. Note thatV (3) =

[

V (1) 0

0 V (2)

]

.

We observe thatX(3) is calibrated because

n⊤
t PX(3) = n⊤

t P [λX(1) (1− λ)X(2)]

= [λn⊤
t PX(1) (1− λ)n⊤

t PX(2)]

= [λn⊤
t X

(1)V (1) (1− λ)n⊤
t X

(2)V (2)]

= n⊤
t [λX

(1) (1− λ)X(2)]V (3)

= n⊤
t X

(3)V (3)

Finally, we show that the fairness difference isd3. Let γ(1)1 andγ(1)2 be the portions of the total expected

score received by the positive class from each group respectively. Defineγ(2)1 , γ
(2)
2 , γ

(3)
1 , γ

(3)
2 similarly.

γ
(3)
1 − γ

(3)
2 =

1

µ
n⊤
1 PX(3)v(3) − 1

µ
n⊤
2 PX(3)v(3)

=
1

µ
(n⊤

1 − n⊤
2 )PX(3)v(3)

=
1

µ
(n⊤

1 − n⊤
2 )P [λX(1)v(1) (1− λ)X(2)v(2)]

=
1

µ
(λ(n⊤

1 − n⊤
2 )PX(1)v(1) + (1− λ)(n⊤

1 − n⊤
2 )X

(2)v(2)])

= λ(γ
(1)
1 − γ

(1)
2 ) + (1− λ)(γ

(2)
1 − γ

(2)
2 )

= λd1 + (1− λ)d2

= d3

Corollary 4.2 There exists a non-trivial fair assignment if and only if there exist non-trivial well-calibrated
assignments X(1) and X(2) such that X(1) weakly favors group 1 and X(2) weakly favors group 2.

Proof: If there is a non-trivial fair assignment, then it weakly favors both group 1 and group 2, proving
one direction.

To prove the other direction, observe that the fairness differencesd1 andd2 of X(1) andX(2) are nonnegative
and nonpositive respectively. Since the set of fairness differences achievable by non-trivial well-calibrated
assignments is an interval by Lemma 4.1, there exists a non-trivial well-calibrated assignment with fairness
difference 0, meaning there exists a non-trivial fair assignment.

It is an open question whether there is a polynomial-time algorithm to find a fair assignment of minimum
loss, or even to determine whether a non-trivial fair solution exists.
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4.2 NP-Completeness of Non-Trivial Integral Fair Risk Assignments

As discussed in the introduction, risk assignments in our model are allowed to split people with a given
feature vectorσ over several bins; however, it is also of interest to consider the special case ofintegral risk
assignments, in which all people with a given featureσ must go to the same bin. For the case of equal base
rates, we can show that determining whether there is a non-trivial integral fair assignment is NP-complete.
The proof uses a reduction from the Subset Sum problem and is given in the Appendix.

The basic idea of the reduction is as follows. We have an instance of Subset Sum with numbersw1, . . . , wm

and a target numberT ; the question is whether there is a subset of thewi’s that sums toT . As before,γt
denotes the average of the expected scores received by members of the positive class in groupt. We first
ensure that there is exactly one non-trivial way to allocatethe people of group 1, allowing us to control
γ1. The fairness conditions then require thatγ2 = γ1, which we can use to encode the target value in the
instance of Subset Sum. For every input numberwi in the Subset Sum instance, we createpσ2i−1

andpσ2i
,

close to each other in value and far from all otherpσ values, such that groupingσ2i−1 andσ2i together into
a bin corresponds to choosingwi for the subset, while not grouping them corresponds to not taking wi. This
ensures that group 2 can be assigned with the correct value ofγ2 if and only if there is a solution to the
Subset Sum instance.

5 Conclusion

In this work we have formalized three fundamental conditions for risk assignments to individuals, each of
which has been proposed as a basic measure of what it means forthe risk assignment to be fair. Our main
results show that except in highly constrained special cases, it is not possible to satisfy these three constraints
simultaneously; and moreover, a version of this fact holds in an approximate sense as well.

Since these results hold regardless of the method used to compute the risk assignment, it can be phrased
in fairly clean terms in a number of domains where the trade-offs among these conditions do not appear to
be well-understood. To take one simple example, suppose we want to determine the risk that a person is a
carrier for a diseaseX, and suppose that a higher fraction of women than men are carriers. Then our results
imply that in any test designed to estimate the probability that someone is a carrier ofX, at least one of the
following undesirable properties must hold: (a) the test’sprobability estimates are systematically skewed
upward or downward for at least one gender; or (b) the test assigns a higher average risk estimate to healthy
people (non-carriers) in one gender than the other; or (c) the test assigns a higher average risk estimate to
carriers of the disease in one gender than the other. The point is that this trade-off among (a), (b), and (c)
is not a fact about medicine; it is simply a fact about risk estimates when the base rates differ between two
groups.

Finally, we note that our results suggest a number of interesting directions for further work. First, when
the base rates between the two underlying groups are equal, our results do not resolve the computational
tractability of finding the most accurate risk assignment, subject to our three fairness conditions, when the
people with a given feature vector can be split across multiple bins. (Our NP-completeness result applies
only to the case in which everyone with a given feature vectormust be assigned to the same bin.) Second,
there may be a number of settings in which the cost (social or otherwise) of false positives may differ greatly
from the cost of false negatives. In such cases, we could imagine searching for risk assignments that satisfy
the calibration condition together with only one of the two balance conditions, corresponding to the class for
whom errors are more costly. Determining when two of our three conditions can be simultaneously satisfied
in this way is an interesting open question. More broadly, determining how the trade-offs discussed here can
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be incorporated into broader families of proposed fairnessconditions suggests interesting avenues for future
research.
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Appendix: NP-Completeness of Non-Trivial Integral Fair Risk Assignments

We can reduce to the integral assignment problem, parameterized bya1σ, a2σ , andpσ, from subset sum as
follows.

Suppose we have an instance of the subset sum problem specified bym numbersw1, . . . , wm and a target
T ; the goal is to determine whether a subset of thewi add up toT . We create an instance of the integral
assignment problem withσ1, . . . , σ2m+2. a1,σi

= 1/2 if i ∈ {2m + 1, 2m + 2} and 0 otherwise.a2,σi
=

1/(2m) if i ≤ 2m and 0 otherwise. We make the following definitions:

ŵi = wi/(Tm
4)

εi =
√

ŵi/2

pσ2i−1
= i/(m+ 1)− εi (1 ≤ i ≤ m)

pσ2i
= i/(m+ 1) + εi (1 ≤ i ≤ m)

γ = 1/m

2m
∑

i=1

p2σi
− 1/m5

pσ2m+1
= (1−

√

2γ − 1)/2

pσ2m+2
= (1 +

√

2γ − 1)/2

With this definition, the subset sum instance has a solution if and only if the integral assignment instance
given bya1,σ, a2,σ, pσ1

, . . . , pσ2m+2
has a solution.

Before we prove this, we need the following lemma.

Lemma 5.1 For any z1, . . . , zk ∈ R,

k
∑

i=1

z2i −
1

k

(

m
∑

i=1

zi

)2

=
1

k

k
∑

i<j

(zi − zj)
2

Proof:

k
∑

i=1

z2i −
1

k

(

m
∑

i=1

zi

)2

=

k
∑

i=1

z2i −
1

k





k
∑

i=1

z2i + 2

k
∑

i<j

zizj





=
k − 1

k

k
∑

i=1

z2i −
2

k

k
∑

i<j

zizj

=
1

k

k
∑

i<j

(z2i + z2j )−
2

k

k
∑

i<j

zizj

=
1

k

k
∑

i<j

z2i − 2zizj + z2j

=
1

k

k
∑

i<j

(zi − zj)
2
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Now, we can prove that the integral assignment problem is NP-hard.

Proof: First, we observe that for any nontrivial solution to the integral assignment instance, there must
be two binsb 6= b′ such thatXσ2m+1,b = 1 andXσ2m+2,b′ = 1. In other words, the people withσ2m+1

andσ2m+2 must be split up. If not, then all the people of group 1 would bein the same bin, meaning that
bin must be labeled with the base rateρ1 = 1/2. In order to maintain fairness, the same would have to
be done for all the people of group 2, resulting in the trivialsolution. Moreover,b andb′ must be labeled
(1±√

2γ − 1)/2 respectively because those are the fraction of people of group 1 in those bins who belong
to the positive class.

This means thatγ1 = 1/ρ · (a1,σ2m+1
p2σ2m+1

+ a1,σ2m+2
p2σ2m+2

) = p2σ2m+1
+ p2σ2m+2

= γ as defined above.
We know that a well-calibrated assignment is fair only ifγ1 = γ2, so we knowγ2 = γ.

Next, we observe thatρ2 = ρ1 = 1/2 because all of the positivea2,σ ’s are1/(2m), soρ2 is just the average
of {pσ1

, . . . , pσ2m
}, which is1/2 by symmetry.

Let Q be the partition of[2m] corresponding to the assignment, meaning that for a givenq ∈ Q, there is a
bin bq containing all people withσi such thati ∈ q. The label on that bin is

vq =

∑

i∈q a2,σi
pσi

∑

i∈q a2,σi

=
1/(2m)

∑

i∈q pσi

|q|/(2m)

=
1

|q|
∑

i∈q

pσi

Furthermore, binbq contains
∑

i∈q a2,σi
pσi

= 1/(2m)
∑

i∈q pσi
positive fraction. Using this, we can come

up with an expression forγ2.

γ2 =
1

ρ

∑

q∈Q



vb ·
1

2m

∑

i∈q

pσi





=
1

m

∑

q∈Q

1

|q|





∑

i∈q

pσi





2

Setting this equal toγ, we have

1

m

∑

q∈Q

1

|q|





∑

i∈q

pσi





2

=
1

m

2m
∑

i=1

p2σi
− 1

m5

∑

q∈Q

1

|q|





∑

i∈q

pσi





2

=

2m
∑

i=1

p2σi
− 1

m4

Subtracting both sides from
∑2m

i=1 p
2
σi

and using Lemma 5.1, we have

∑

q∈Q

1

|q|
∑

i<j∈q

(pσi
− pσj

)2 =
1

m4
(11)
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Thus,Q is a fair nontrivial assignment if and only if (11) holds.

Next, we show that there existsQ that satisfies (11) if and only if there there exists someS ⊆ [m] such that
∑

i∈S ŵi = 1/m4.

AssumeQ satisfies (11). Then, we first observe that anyq ∈ Q must either contain a singlei, meaning
it does not contribute to the left hand side of (11), orq = {2i − 1, 2i} for somei. To show this, observe
that the closest two elements of{pσ1

, . . . , pσ2m
} not of the form{pσ2i−1

, pσ2i
} must be some{pσ2i

, pσ2i+1
}.

However, we find that

(pσ2i+1
− pσ2i

)2 =

(

i+ 1

m+ 1
− εi+1 −

(

i

m+ 1
+ εi

))2

=

(

1

m+ 1
− εi+1 − εi

)2

=

(

1

m+ 1
−
√

ŵi+1

2
−
√

ŵi

2

)2

≥
(

1

m+ 1
−
√

2

m4

)2

(ŵi ≤ 1/m4)

=

(

1

m+ 1
−

√
2

m2

)2

≥
(

1

2m
−

√
2

m2

)2

=

(

m− 2
√
2

2m2

)2

≥
( m

4m2

)2

=

(

1

4m

)2

=
1

16m2

If any q contains anyj, k not of the form2i− 1, 2i, then (11) will have a term on the left hand side at least
1/m · 1/(16m2) = 1/(16m3) > 1/m4 for large enoughm, and since there can be no negative terms on the
left hand side, this immediately makes it impossible forQ to satisfy (11).

Consider every2i − 1, 2i ∈ [2m]. Let qi = {2i − 1, 2i}. As shown above, eitherqi ∈ Q or {2i − 1} ∈ Q
and{2i} ∈ Q. In the latter case, neitherpσ2i−1

nor pσ2i
contributes to (11). Ifqi ∈ Q, thenqi contributes

1/2(pσ2i−pσ2i−1
)2 = 1/2(2εi)

2 = ŵi to the overall sum on the left hand side. Therefore, we can write the
left hand side of (11) as

∑

q∈Q

1

|q|
∑

i<j∈q

(pσi
− pσj

)2 =
∑

qi∈Q

1

2
(pσ2i−pσ2i−1

)2 =
∑

qi∈Q

ŵi =
1

m4

Then, we can build a solution to the original subset sum instance asS = {i : qi ∈ Q}, giving us
∑

i∈S ŵi =
1
m4 . Multiplying both sides byTm4, we get

∑

i∈S wi = T , meaningS is a solution for the subset sum
instance.
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To prove the other direction, assume we have a solutionS ⊆ [m] such that
∑

i∈S wi = T . Dividing both
sides byTm4, we get

∑

i∈S ŵi = 1/m4. We build a partitionQ of 2m by starting with the empty set and
addingqi = {2i− 1, 2i} toQ if i ∈ S and{2i− 1} and{2i} toQ otherwise. Clearly, each element of[2m]
appears inQ at most once, making this a valid partition. Moreover, when checking to see if (11) is satisfied
(which is true if and only ifQ is a fair assignment), we can ignore allq ∈ Q such that|q| = 1 because they
don’t contribute to the left hand side. Since, we again have

∑

q∈Q

1

|q|
∑

i<j∈q

(pσi
− pσj

)2 =
∑

qi∈Q

1

2
(pσ2i−pσ2i−1

)2 =
∑

qi∈Q

ŵi =
1

m4

meaningQ is a fair assignment. This completes the reduction.

We have shown that the integral assignment problem is NP-hard, and it is clearly in NP because given an
integral assignment, we can verify in polynomial time whether such an assignment satisfies the conditions
(A), (B), and (C). Thus, the integral assignment problem is NP-complete.
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