

Semaine recherche

Objectifs :

- **Mieux connaître la recherche de l'Ecole par des visites de laboratoire**
- **Comprendre ce qu'est une thèse (avant, pendant, après)**
- **Mener un travail bibliographique sur un article scientifique**

Ne concerne pas que les élèves qui ont choisi le parcours recherche !

IP PARIS

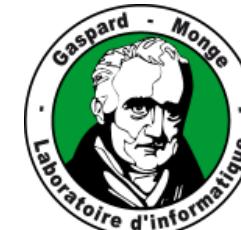
Economie

PARIS SCHOOL OF ECONOMICS
ÉCOLE D'ÉCONOMIE DE PARIS

Laboratoire
Ville
Mobilité
Transport

Visite de deux laboratoires

Modélisation



Imagine

Construction
Matériaux

Mobilités
Transport

Maths
Sci. données

Politiques
publiques

Environnement
Climat

Energie

LATTS

LABORATOIRE TECHNIQUES
TERRITOIRES ET SOCIÉTÉS

Sci. Humaines &
Sociales

Aventure
intellectuelle

Expertise
scientifique

Expérience
professionnelle

Formation par la recherche ?

Doctorat dans un labo des ponts => doctorat Institut Polytechnique de Paris

Recherche

Connexion

Connexion

Idées Économie Politique Entreprises Finance - Marchés Bourse Monde Tech-Médias Start-up Régions Patrimoine

Le doctorat, enfin un passeport pour l'entreprise ?

VERDO, YANN, 2018. Le doctorat, enfin un passeport pour l'entreprise ?

Les Echos. 12 janvier 2018. Vol. 22612, n° 22612, pp. 9.

<https://www.lesechos.fr/2018/01/le-doctorat-enfin-un-passeport-pour-lentreprise-981599>

**Pas forcément
trajectoire académique**

**Thèses
avec des entreprises**

Innovation

Comprendre ce qu'est une thèse

Rencontre de chercheurs et de doctorants de plusieurs laboratoires

Du master à la thèse : stage / candidature ...

Déroulement d'une thèse / types de thèse / financement ...

Après-thèse :

- Enseignement
- Recherche et/ou Développement
- Entreprise
- Haute fonction publique nationale ou internationale

Travail bibliographique sur un article scientifique

Deep learning

Yann LeCun^{1,2}, Yoshua Bengio¹ & Geoffrey Hinton^{4,5}

¹Facebook AI Research, 770 Broadway, New York, New York 10003 USA

²New York University, 713 Broadway, New York, New York 10003, USA

³Department of Computer Science and Operations Research, Université de Montréal, Pavillon André-Aisenstadt, PO Box 6128, Centre-Ville STN Montréal, Québec H3C 3J7, Canada.

⁴Google, 1600 Amphitheatre Parkway, Mountain View, California 94041, USA

⁵Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3G6, Canada

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning.

Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, constructing a pattern-recognition or machine-learning system required careful engineering and considerable domain expertise to design a feature extractor that transformed the raw data (such as the pixel values of an image) into a suitable internal representation or feature vector from which the learning subsystem, often a classifier, could detect or classify patterns in the input.

Representation learning is a set of methods that allows a machine to be fed with raw data and to automatically discover the representations needed for detection or classification. Deep-learning methods are representation-learning methods with multiple levels of representation, obtained by composing simple but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at a higher, slightly more abstract level. With the composition of enough such transformations, very complex functions can be learned. For classification tasks, higher layers of representation amplify aspects of the input that are important for discrimination and suppress irrelevant variations. An image, for example, comes in the form of an array of pixel values, and the learned features in the first layer of representation typically represent the presence or absence of edges at particular orientations and locations in the image. The second layer typically detects motifs by spotting particular arrangements of edges, regardless of small variations in the edge positions. The third layer may assemble motifs into larger combinations that correspond to parts of familiar objects, and subsequent layers would detect objects as combinations of these parts. The key aspect of deep learning is that these layers of features are not designed by human engineers: they are learned from data using a general-purpose learning procedure.

Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years. It has turned out to be very good at discovering

intricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition^{1–4} and speech recognition^{5–7}, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules⁸, analysing particle accelerator data^{9,10}, reconstructing brain circuits¹¹, and predicting the effects of mutations in non-coding DNA on gene expression and disease^{12,13}. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding¹⁴, particularly topic classification, sentiment analysis, question answering¹⁵ and language translation^{16,17}.

We think that deep learning will have many more successes in the near future because it requires very little engineering by hand, so it can easily take advantage of increases in the amount of available computation and data. New learning algorithms and architectures that are currently being developed for deep neural networks will only accelerate this progress.

Supervised learning

The most common form of machine learning, deep or not, is supervised learning. Imagine that we want to build a system that can classify images as containing, say, a house, a car, a person or a pet. We first collect a large data set of images of houses, cars, people and pets, each labelled with its category. During training, the machine is shown an image and produces an output in the form of a vector of scores, one for each category. We want the desired category to have the highest score of all categories, but this is unlikely to happen before training. We compute an objective function that measures the error (or distance) between the output scores and the desired pattern of scores. The machine then modifies its internal adjustable parameters to reduce this error. These adjustable parameters, often called weights, are real numbers that can be seen as 'knobs' that define the input-output function of the machine. In a typical deep-learning system, there may be hundreds of millions of these adjustable weights, and hundreds of millions of labelled examples with which to train the machine.

To properly adjust the weight vector, the learning algorithm computes a gradient vector that, for each weight, indicates by what amount the error would increase or decrease if the weight were increased by a tiny amount. The weight vector is then adjusted in the opposite direction to the gradient vector.

The objective function, averaged over all the training examples, can

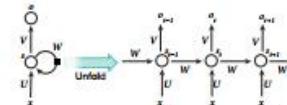


Figure 5 - A recurrent neural network and the unfolding in time of the computation involved in its forward computation. The artificial neurons (for example, hidden units grouped under node s with values s_t at time t) get inputs from other neurons at previous time steps (this is represented with the black square, representing a delay of one time step, on the left). In this way, a recurrent neural network can map an input sequence with elements x_t into an output sequence with elements s_t , with each s_t depending on all the previous x_t' (for $t' \leq t$). The same parameters (matrices U, V, W) are used at each time step. Many other architectures are possible, including a variant in which the network can generate a sequence of outputs (for example, words), each of which is used as inputs for the next time step. The backpropagation algorithm (Fig. 1) can be directly applied to the computational graph of the unfolded network on the right, to compute the derivative of a total error (for example, the log-probability of generating the right sequence of outputs) with respect to all the states s_t and all the parameters.

that each contribute plausibility to a conclusion^{18,19}.

Instead of translating the meaning of a French sentence into an English sentence, one can learn to 'translate' the meaning of an image into an English sentence (Fig. 3). The encoder here is a deep ConvNet that converts the pixels into an activity vector in its last hidden layer. The decoder is an RNN similar to the ones used for machine translation and neural language modelling. There has been a surge of interest in such systems recently (see examples mentioned in ref. 86).

RNNs, once unfolded in time (Fig. 5), can be seen as very deep feed-forward networks in which all the layers share the same weights. Although their main purpose is to learn long-term dependencies, theoretical and empirical evidence shows that it is difficult to learn to store information for very long²⁰.

To correct for that, one idea is to augment the network with an explicit memory. The first proposal of this kind is the long short-term memory (LSTM) networks that use special hidden units, the natural behaviour of which is to remember inputs for a long time²¹. A special unit called the memory cell acts like an accumulator or a gated leaky neuron: it has a connection to itself at the next time step that has a weight of one, so it copies its own real-valued state and accumulates the external signal, but this self-connection is multiplicatively gated by another unit that learns to decide when to clear the content of the memory.

LSTM networks have subsequently proved to be more effective than conventional RNNs, especially when they have several layers for each time step²², enabling an entire speech recognition system that goes all the way from acoustics to the sequence of characters in the transcription. LSTM networks or related forms of gated units are also currently used for the encoder and decoder networks that perform so well at machine translation^{17,23}.

Over the past year, several authors have made different proposals to augment RNNs with a memory module. Proposals include the Neural Turing Machine in which the network is augmented by a 'tape-like' memory that the RNN can choose to read from or write to²⁴, and memory networks, in which a regular network is augmented by a kind of associative memory²⁵. Memory networks have yielded excellent performance on standard question-answering benchmarks. The memory is used to remember the story about which the network is asked to answer questions.

Beyond simple memorization, neural Turing machines and memory networks are being used for tasks that would normally require reasoning and symbol manipulation. Neural Turing machines can be taught 'algorithms'. Among other things, they can learn to output

a sorted list of symbols when their input consists of an unsorted sequence in which each symbol is accompanied by a real value that indicates its priority in the list²⁶. Memory networks can be trained to keep track of the state of the world in a setting similar to a text adventure game and, after reading a story, they can answer questions that require complex inference²⁷. In one test example, the network is shown a 15-sentence version of the *The Lord of the Rings* and correctly answers questions such as 'where is Frodo now'²⁸.

The future of deep learning

Unsupervised learning^{1–10} had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. Although we have not focused on it in this Review, we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object.

Human vision is an active process that sequentially samples the optic array in an intelligent, task-specific way using a small, high-resolution fovea with a large, low-resolution surround. We expect much of the future progress in vision to come from systems that are trained end-to-end and combine ConvNets with RNNs that use reinforcement learning to decide where to look. Systems combining deep learning and reinforcement learning are in their infancy, but they already outperform passive vision systems²⁹ at classification tasks and produce impressive results in learning to play many different video games³⁰.

Natural language understanding is another area in which deep learning is poised to make a large impact over the next few years. We expect systems that use RNNs to understand sentences or whole documents will become much better when they learn strategies for selectively attending to one part at a time^{30,31}.

Ultimately, major progress in artificial intelligence will come about through systems that combine representation learning with complex reasoning. Although deep learning and simple reasoning have been used for speech and handwriting recognition for a long time, new paradigms are needed to replace rule-based manipulation of symbolic expressions by operations on large vectors^{10,11}.

1. Krizhevsky, A., Sutskever, I., Hinton, G. ImageNet classification with deep convolutional neural networks. In *Proc. Advances in Neural Information Processing Systems* 25:1090–1098 (2012).

This report was a breakthrough that used convolutional nets to almost halve the error rate for object recognition, and precipitated the rapid adoption of deep learning by the computer vision community.

2. Farabet, C., Couprie, C., Najman, L. & LeCun, Y. Learning hierarchical features for scene labeling. *Proc. NIPS* 25:1915–1920 (2013).

3. Tompson, J., Jain, A., LeCun, Y., Broggi, C. Joint training of a convolutional network and a graphical model for human pose estimation. In *Proc. Advances in Neural Information Processing Systems* 27:1799–1807 (2014).

4. Szegedy, C. et al. Going deeper with convolutions. Preprint at: <http://arxiv.org/abs/1409.4842> (2014).

5. Mikolov, T., Sutskever, D., Chen, K., Corrado, G. & Dean, J. Strategies for training large scale neural language models. In *Proc. Automatic Speech Recognition and Understanding* 19:203–201 (2011).

6. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition. *IEEE Signal Processing Magazine* 29, 82–97 (2012).

This joint paper from the major speech recognition laboratories, summarizing the breakthrough achieved with deep learning on the task of phonetic classification and automatic speech recognition, was the first major industrial application of deep learning.

7. Sainath, T., Mohamed, A.-R., Kingsbury, B. & Ramabhadran, B. Deep convolutional neural networks for LVCSR. In *Proc. Acoustics, Speech and Signal Processing* 8614–8618 (2013).

8. Ma, J., Sheridan, R., Li, L., Liaw, G. E. & Svetlik, V. Deep neural nets as a method for quantitative structure-activity relationships. *J. Chem. Inf. Model.* 55, 263–274 (2015).

9. Ma, J., Sheridan, R., Li, L., Liaw, G. E. & Svetlik, V. Online particle detection with neural networks based on topological calotropy information. *J. Phys. Conf. Series* 368, 012030 (2012).

10. Kaggle. Higgs boson machine learning challenge. Kaggle <https://www.kaggle.com/c/higgs-boson> (2014).

11. Helmstaedter, M. et al. Connectomic reconstruction of the inner plexiform layer in the mouse retina. *Nature* 500, 168–174 (2013).

Travail bibliographique sur un article scientifique

20 doctorants dans tous les laboratoires sont mobilisés pour proposer un article scientifique remarquable (historique, fondamental, etc....) accessible pour vous

Travail en groupe de 4 élèves accompagné par le doctorant

Méthodologie : exposé de Florence Rieu et RDV avec chaque groupe

Présentation du travail devant un jury le jeudi après-midi

Organisation de la semaine

LUNDI	MARDI	MERCREDI	JEUDI
Thèse	Visite laboratoire	Visite laboratoire	Finalisation rendu
Intro biblio	Travail sur article	Travail sur article	Présentation Jury