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Sociales, Paris, France

Received 12 May 2009 / Received in final form 8 June 2009
Published online 8 July 2009 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2009

Abstract. The collective behavior in a variant of Schelling’s segregation model is characterized with meth-
ods borrowed from statistical physics, in a context where their relevance was not conspicuous. A measure
of segregation based on cluster geometry is defined and several quantities analogous to those used to de-
scribe physical lattice models at equilibrium are introduced. This physical approach allows to distinguish
quantitatively several regimes and to characterize the transitions between them, leading to the building
of a phase diagram. Some of the transitions evoke empirical sudden ethnic turnovers. We also establish
links with ‘spin-1’ models in physics. Our approach provides generic tools to analyze the dynamics of other
socio-economic systems.

PACS. 89.75.-k Complex systems – 89.65.-s Social and economic systems

1 Introduction

In the course of his study of the segregation effects ob-
served in many social situations, Thomas Schelling intro-
duced in the 1970’s [1,2] a model that has attracted a lot of
attention ever since, to the point that it may now be con-
sidered an archetype in the social sciences. The success of
the Schelling model is due to several factors: it was one of
the first models of a complex system to show emergent be-
havior due to interactions among agents; it is very simple
to describe, yet its main outcome – that strong segregation
effects can arise from rather weak individual preferences –
came as a surprise and proved robust with respect to var-
ious more realistic refinements; as a consequence, it has
possibly far-reaching implications for social and economic
policies aiming at fighting urban segregation, considered
a major issue in many countries (for recent discussions of
the social relevance of the model, see [3] and [4]).

An important recent development is the realization
that there exists a striking kinship between this model and
various physical models used to describe surface tension
phenomena [5] or phase transitions and clustering effects,
such as the Ising model [6–9]. This connection is not a
rigorous correspondence, still it is more than a mere anal-
ogy. It gives novel insight into the behavior of the Schelling
model, and it suggests more generally that socio-economic
models may be fruitfully attacked drawing from the tool-
box of statistical physics [8,10]. Indeed, physicists devel-
oped during the last decades powerful methods for situa-
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tions where obtaining analytical results seems out of reach.
These rely on the quantitative analysis of computer simu-
lation results, guided by some general principles. They are
well suited to complex systems such as those encountered
in the social sciences and should in particular prove pow-
erful in conjunction with agent-based modeling1, a grow-
ingly popular approach [11].

A key physicist strategy is to characterize the system
under study by the phase diagram which gives, in the space
of control parameters, the boundaries separating domains
of different qualitative behaviors. Each type of behavior is
qualified by the order of magnitude of a small set of macro-
scopic quantities, the so-called “order parameters”. The
main difficulties are to correctly identify the relevant set of
order parameters and the associated qualitative behaviors
of the system, and to locate and characterize the bound-
aries, on which “phase transitions” occur in a smooth or
discontinuous way. In the present paper, we show how sev-
eral of the methods evoked above can be adapted and
applied to the building of the phase diagram of social dy-
namics models, taking as paradigm the Schelling segre-
gation model. More precisely, we illustrate our approach
on a particular variant of the Schelling model, where the
basic variables are the tolerance (to be defined precisely
below) and the density of vacant sites. We introduce two
order parameters which provide a relevant measure of
global segregation, a surrogate of the energy, and ana-

1 The ‘hand-made simulations’ done by Schelling by moving
pawns on a chessboard can be considered as among the first
agent-based simulations ever done in social science.
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logues of the susceptibility and the specific heat. We also
introduce a real-space renormalization method suited to
situations with a high density of vacancies. Our analysis
shows the existence in the phase diagram of the model
of sharp transitions, where relevant quantities have sin-
gularities, and we discuss the nature of these transitions.
They separate different types of behavior – segregated,
mixed, or “frozen” –, in agreement with qualitative obser-
vations based on pictures of simulated systems [5]. In addi-
tion we make contact with the Blume-Emery-Griffiths [12]
and Blume-Capel [13,14] models, which are spin-1 models
much studied in relation with binary mixtures containing
mobile vacancies and which show a richer behavior than
the simple Ising model, with both discontinuous and con-
tinuous transitions.

One should insist that most variants of the Schelling
segregation model are of kinetic nature: their dynamics
cannot be described as the relaxation to an equilibrium
characterized by some energy function, except for spe-
cific variants (for such exceptions, see e.g. [15] and the
discussion below on the links with spin models). Never-
therless, the tools and quantities we introduce by analogy
with equilibrium statistical mechanics appear to be quite
efficient to characterize the model behaviors. They are suf-
ficiently general and relatively simple to be adaptable to
a large variety of social and economic models, as long as
these involve interacting agents living in a discrete space
or more generally on a social network.

2 Model and qualitative analysis

In Schelling’s original model [1] agents of two possible col-
ors are located on the sites of a chessboard. Each color cor-
responds to members of one of two homogeneous groups
which differ for example by their race, their wealth, etc.
A fraction of the sites are blanks, the agents of both col-
ors may move to these vacancies. The neighborhood of an
agent comprises the eight nearest and next-nearest sites
(Moore neighborhood). If less than 1

3 of an agent’s neigh-
bors belong to his group, he is discontent – in economic
terms his utility is 0; otherwise he is satisfied – his utility
is 1. Starting from random initial configurations Schelling
displaced discontent agents onto the closest satisfactory
vacant sites, if possible. He observed that the system al-
ways reached a segregated state, where large clusters of
same-color agents were formed. The crucial point is that
segregation appears as an emergent phenomenon, in the
sense that the collective effect is much stronger than what
would be naively expected, as individual agents are happy
to live in a mixed neighborhood. This phenomenon proves
robust: a similar outcome, with some caveats, is found
in variants of the model, even when the utility function is
non-monotonous with the fraction of similar neighbors [3].

The model we consider is a variant of the original
Schelling model: the agents are satisfied with their neigh-
borhood if it is constituted of a number of unlike agents
Nd lower than (or equal to) a fixed proportion T of all the
agents in the neighborhood. The parameter T is called the

tolerance [1]. The other control parameter of the model is
the vacancy density ρ. The randomly chosen agents move
one by one to any vacancy which has a satisfying neighbor-
hood – this is equivalent to long-range diffusion in physical
terms. If no vacancy fits for some agents the latter respec-
tively move back to their initial position. This dynamics is
repeated until configurations are reached where the num-
ber of satisfied agents is almost stable.

Several comments are in order. The global utility may
decrease at times during the process, as the gain for the
moved agent can be less than the net loss for his old plus
new neighbors [2]. Note also that in the present variant
satisfied agents can also move, not just discontent ones.
That rule introduces some noise in the dynamics and is
useful to avoid a particularity of the original Schelling
model noted in [7,15], namely that the system may end
up in states where the clusters are large but finite, so that
strictly speaking no large-scale segregation occurs. We will
see later how the intensity of this noise is actually corre-
lated with the tolerance level T . From a different point
of view, since a higher tolerance allows for a larger num-
ber of configurations of satisfied agents (higher entropy),
this parameter may be thought of as a temperature-like
variable. A direct analogy between the Schelling model at
tolerance T and the Ising model at temperature T has
been put forward in [6,7]. This introduces a probabilistic
decision rule for the agents which is not in the spirit of the
original model. Here, we keep the decision rules of the orig-
inal model, introducing randomness only through moves of
already satisfied agents. We will however be guided by the
qualitative correspondence between the temperature and
the tolerance but in a totally different way than in [6,7]
as we will see in Section 4.

Finally, let us emphasize that only a finite number of
values of T are meaningful, namely 1/8, 1/7, ..., 6/7, 7/8.
They correspond to the maximal number of tolerated dif-
ferent neighbors divided by the actual number of occupied
sites in the neighborhood. Any other value for T is thus
equivalent to the closest inferior meaningful value.

2.1 Numerical simulations

Our simulations were performed on a L×L lattice (L = 50,
unless otherwise specified) with free boundary conditions.
The effects of boundary conditions have been studied in [5]
on a slightly different model. For the present model in the
large time limit, we do not expect any qualitative differ-
ence between the different boundary conditions, as far as
the nature of transitions and phases are concerned. We
checked this by a limited number of simulations with pe-
riodic boundary conditions.

An initial configuration was randomly generated such
that the vacancies and the two types of agents were fully
mixed. Then the evolution followed the rules described
above. In the simulations one time step corresponds to one
attempted move per occupied site on average, the usual
definition of a Monte-Carlo step.
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Fig. 1. Evolution of the configuration for a vacancy concen-
tration ρ = 5% and a tolerance T = 0.5 with a network size
L = 100. St stands for the number of time steps. The red and
blue pixels correspond to the two types of agents, the white
pixels to the vacancies. The system evolves from a random con-
figuration – where the vacancies and the two types of agents
are intimately mixed – to a completely segregated configura-
tion. After just 10 steps there exist two percolating clusters,
one of each color, which are very convoluted, fractal-like.

Figure 1 shows the time evolution of a typical con-
figuration, for a vacancy density of 5% and a tolerance
T = 0.5, which means that agents accept at most half of
their neighbors to be different from themselves. One ob-
serves the rapid formation of large clusters. After 10 time
steps, the proportion of satisfied agents is already very
close to 1 (Appendix A, Fig. A.2). It increases slowly
thereafter, but the structure of the clusters keeps evolv-
ing. They become more and more compact and well sep-
arated spatially, their surface gets less corrugated, in a
process strongly reminiscent of coarsening effects in al-
loys [16]. We now consider more general values of the
tolerance and the vacancy density. Figure 2 shows con-
figurations obtained after letting the system evolve with
the dynamics previously described until it reaches equilib-
rium. What is meant by equilibrium here may correspond
to two different situations: (i) the system does not evolve
at all anymore (fixed point); (ii) the systems reaches some
stationary state: the fluctuations of the studied parame-
ters remain weak during a large number of time steps. In
the following all averaged quantities are measured during
30 000 steps after equilibrium is reached.

At small and moderate values of ρ, one observes that:

– for low values of the tolerance the system stays in a
mixed state, no large one-color clusters are formed al-
though this would be more satisfactory for the agents.
Actually, whatever the initial configuration, the sys-
tem remains close to the state in which it was created:
this is a dynamically frozen state;

– when T increases, at fixed ρ, a drastic qualitative
change occurs at an intermediate value of T : the sys-
tem separates into two homogeneous regions of differ-
ent colors, segregation occurs. This behavior subsists
for an interval of T which depends on ρ;

– for T larger than a value weakly depending on ρ, the
final configuration is again mixed.

For large values of ρ one observes a smooth transition as T
increases from a segregated state to a mixed one. We will
now give a more quantitative description and characterize
the transitions between these different behaviors.

Fig. 2. Configurations obtained at large times for selected
values of ρ and T .

3 Quantitative analysis: order parameters

3.1 Main order parameter: a measure of segregation

Though the presence of segregation in a system can be
visually assessed, a quantitative way to measure it is nec-
essary, in particular to discuss the nature of the transi-
tions between different states. Different possible measures
have been suggested, by Schelling himself and later by
various authors [3,15,17], which capture various aspects
of the phenomenon. Here we introduce a measure linked
to the definition of segregation as the grouping of agents of
the same type and the exclusion of the other type in a
given area. To that effect we consider that two agents be-
long to the same cluster if they are nearest neighbors (the
Moore neighborhood cannot be used here, since Moore
clusters of different colors may overlap and be large with-
out segregation occurring). The (mass) size of a cluster c,
i.e. the number of agents it contains, will be called nc.
Taking a hint from percolation theory where it plays a
central role [18], we introduce the weighted average S of
the size of the clusters in one configuration

S =
∑

{c}
nc pc (1)

where pc = nc/Ntot is the weight of cluster c, Ntot =
L2(1 − ρ) being the total number of agents. The maxi-
mal size of a cluster is Ntot/2, so the normalized weighted
cluster size s is given by

s =
2

L2(1 − ρ)
S =

2
(L2(1 − ρ))2

∑

{c}
nc

2. (2)

The sample average of s after reaching equilibrium will
be called the segregation coefficient 〈s〉. Its value for com-
plete segregation (i.e., only two clusters survive) is 1 and
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Fig. 3. Segregation coefficient (average of s defined in Eq. (2))
for several values of the vacancy density ρ. The lines linking
the points are guides to the eye.

it vanishes if the size of the clusters remains finite when
the system dimension L tends to infinity. It may therefore
play the role of an order parameter to identify a segrega-
tion transition. The variation of the segregation coefficient
〈s〉 with respect to the tolerance is illustrated in Figure 3
for different values of the vacancy density. The calcula-
tions were done using the Hoshen-Kopelman algorithm to
labelize the clusters [19].

For each density of vacancies there exist two critical
values of the tolerance. At the first one Tf (f for frozen),
〈s〉 jumps from a very low value to about 1. This signals an
abrupt change from a mixed configuration to one with only
two clusters (one for each type of agent). A second jump,
in the reverse direction, occurs for a larger tolerance Tc.
This second value depends slightly on ρ, unlike Tf . The
higher the density of vacancies, the smaller the value of
T at which the segregation phenomenon appears and the
broader the interval of T for which it exists.

For a vacancy density above about 20% the segregation
coefficient departs from 1 (Fig. 3), even if the agents are
visually segregated (Fig. 4). This is due to the definition
of a cluster based only on the four nearest neighbors. In
some regions, even if there are agents of one color only the
presence of many vacancies may lead to group them into
distinct clusters and to miss the existence of a “dilute seg-
regation” situation. In order to identify clusters at a larger
scale in such cases we introduce a real-space renormaliza-
tion [20] procedure. An example of the renormalization
process for a site and its neighborhood is illustrated on the
left of Figure 4. A renormalized configuration is shown on
the right part of Figure 4 (see Appendix A for details on
the procedure). The renormalization has a strong effect for
high values of the density of vacancies. For ρ = 50% the
configurations are visually segregated for a range of small
and medium values of the tolerance but the raw segrega-
tion coefficient is very small (Fig. 5, left), whereas after
renormalization it is very close to 1 (Fig. 5, right).

We can conclude that, for values of the vacancy density
strictly less than 50%, there is a discontinuous transition
from the segregated to the mixed state (as shown in Fig. 3
for ρ up to 26%). At ρ = 50% the transition becomes
continuous – as shown in Figure 5 the order parameter
has a smoother variation –, and there is no longer any

Fig. 4. Example of renormalization. The renormalization is
performed on a configuration corresponding to T = 1

5
and

ρ = 50%.

Fig. 5. Segregation coefficient as a function of the tolerance for
ρ = 50%: raw data (left) and results for the renormalized sys-
tems (right). These suggest that a continuous transition takes
place near T = 0.6. The error bars were obtained by computing
the variance σs, σ2

s = 〈s〉2 − 〈s2〉 (same for Fig. 3).

clear transition for vacancy densities above ∼56% (not
shown). Moreover, the configurations observed at large ρ
suggest the existence of a diluted phase of segregation at
high vacancy densities: the two types of agents are not
mixed but there are domains with many small clusters
of a same color in a sea of vacancies. As for the frozen
state observed at low T for small ρ, it disappears at some
medium value of ρ (compare Fig. 3 with Fig. 5, right).

3.2 A second order parameter: densities of unwanted
locations

The segregation coefficient defined above does not allow
to distinguish between the mixed state at low tolerance
and the one at high tolerance (Fig. 3). However, even if
the final configuration is a mixed configuration for both
situations, the nature of the two states is not the same.
An additional parameter is thus necessary to analyze the
results. We introduce the density ρ̃r of empty places where
the red agents do not want to move (symmetrically ρ̃b for
blue agents). The plot of ρ̃r versus the tolerance (Fig. 6)
shows that this quantity undergoes two jumps for each
vacancy density ρ. Until the tolerance reaches Tf no empty
space is considered attractive by these agents. Between
Tf and Tc half of the vacant sites are satisfactory for one
type of agents. For T larger than Tc almost all empty
spaces are acceptable. A representative configuration for
a situation where all moves are permitted is an unordered
one, this explains the mixed situation observed at high
tolerances. The quantity ρ̃r thus allows to characterize
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Fig. 6. Density ρ̃r of vacancies where the red agents would
be unsatisfied, for several vacancy densities. The results for the
blue agents are similar. Indeed, they play symmetrical roles in
the present model.

the three regimes and to discriminate between the low
and high tolerance mixed situations.

Thanks to the quantities defined previously we have
identified the regions of segregation. Let us summarize
the main results obtained so far. The final configurations
are reminiscent of those encountered in spin lattice mod-
els with paramagnetic (= mixed state) and ferromagnetic
(= segregated state) phases. The segregation coefficient
and the density of unilaterally unwanted locations play the
role of order parameters. They show discontinuous jumps
at some particular values of the tolerance T , indicating the
existence of sharp phase transitions. For not too large val-
ues of the vacancy density there are two such transitions:
at low tolerance, the system goes from a frozen state due
to the dynamics that does not allow any movement, to a
segregated state. At higher tolerance the system becomes
mixed again.

4 Analogues of thermodynamic quantities

4.1 Contact with spin-1 models and analogue
of the energy

We now introduce several other useful quantities by anal-
ogy with thermodynamic properties studied in statisti-
cal physics. To do so, we first exhibit a link with spin-1
models.

One can show that (see Appendix A, had we forbidden
the displacement of satisfied agents (as studied in [2,5,8]),
the dynamics would have a Lyapunov function, that is a
quantity which decreases with time, driving the system
towards a fixed point. This function can be written under
the form

ES = −
∑

〈i,j〉
cicj − K

∑

〈i,j〉
c2
i c

2
j , (3)

where K = 2T − 1 and the cis are ‘spin-1’ variables tak-
ing the value 0 if the location i is not occupied and 1
(resp. −1) if this location is occupied by a red (resp.
blue) agent; the sums are performed on the nearest and

Fig. 7. Variation of the mean of the Blume Capel energy
EBC for different values of the vacancy density. The data are
normalized by 4L2(1 − ρ).

next nearest neighbors. This function (3) is identical to
the energy of the Blume-Emery-Griffiths model [12] un-
der the constraint that the number of sites of each type
(0,±1) is kept fixed. This spin-1 model, and the Blume
Capel model [13,14] corresponding to the particular case
K = 0, have been used in particular to modelize binary
mixtures and alloys in the presence of vacancies. A more
detailed analysis of the link between the Schelling model
and the Blume-Emery-Griffiths model will be published
elsewhere.

In the particular variant considered here, however, the
dynamical rules do not lead to the minimization of such
a global energy. Yet, it is clearly potentially interesting
to consider this quantity ES as a surrogate of the en-
ergy. Compared to the dynamics having ES as a Lyapunov
function, the moves of satisfied agents introduce a source
of noise which has some similarity with a thermal noise.
Its amplitude may be measured by the fraction of agents
who are satisfied. When starting from a random initial
configuration this is higher at higher tolerance, hence the
tolerance value is an indirect measure of this noise level.
This gives another motivation, different from the one al-
ready evoked, for taking the analogy between T and a
temperature as a guideline for the analysis, as done in
what follows.

We find that the average of the second part of the en-
ergy ES essentially consists of a term linear with K (see
Appendix A), so that the transitions are more easily lo-
cated by only plotting the average of the first term of
ES , Figure 7, corresponding to the Blume-Capel part of
the energy, EBC = −∑

〈i,j〉 cicj . It confirms the existence
of the two transitions previously evoked: at low tolerance
its decrease occurs at the transition from the frozen state
to the segregated one, whereas the increase observed at
high tolerances corresponds to the transition to the mixed
state. Such abrupt variations are characteristic of a dis-
continuous – in thermodynamic language “first order” –
transition. Moreover we note from Figure 7 that as the
vacancy density increases the energy varies less abruptly:
this signals a change in the nature of the transition, from
discontinuous to continuous (‘second order’), as will be
discussed below.
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Fig. 8. Variation with the vacancy density of the fluctuation
coefficient Cs.

4.2 Analogue of the specific heat

Since the energy analogue proved fruitful, an analogue of
the specific heat may also be expected to give useful in-
formation. However, here we cannot make use of the ther-
modynamic definition Cs = dES/dT since only a finite
number of values of the tolerance have physical mean-
ing. In order to work with a well-defined quantity at fixed
tolerance T we remark that the specific heat is related
to the energy fluctuations at equilibrium via the so-called
fluctuation-dissipation theorem. In the present context the
relevant formulation of this important theorem is:

Cs =
〈E2

S〉 − 〈ES〉2
T 2

(4)

where the notation 〈 〉 means an average over the configu-
rations taken by the system after reaching equibrium, and
T is the tolerance.

We will call Cs the fluctuation coefficient. It plays a
role analogous to the volatility index measuring price fluc-
tations in financial markets.

According to Figure 8 the fluctuation coefficient has
a well-marked peak at the “segregated-mixed” transition.
This peak flattens out and tends to disappear as the va-
cancy density increases, confirming the disappearance of
the “segregated-mixed” transition. On the other hand this
fluctuation coefficient, null at very low tolerance, has a
slight increase at the “frozen-segregated” transition. The
jump in the energy ES does not show up in the fluctuation
coefficient Cs, indicating that the fluctuation-dissipation
theorem is stongly violated, as typically observed in dy-
namic transitions in glassy or kinetically constrained sys-
tems [22].

4.3 Analogue of the susceptibility

In the same vein one would like to define the suscepti-
bility, a quantity which is to the order-parameter what
the specific heat is to the energy. Here, having proposed
the segregation coefficient as the main order parameter,
we define the analogue of the susceptibility through the

Fig. 9. Evolution with the vacancy density of χs, analogue of
a susceptibility.

fluctuation-dissipation relation involving the order param-
eter fluctuations

χs =
〈s2〉 − 〈s〉2

T
(5)

where s is defined by equation (2). As can be seen in Fig-
ure 9 this susceptibility presents a peak at the second tran-
sition which is more conspicuous for high vacancy densities
than the one for Cs. This peak does not exist anymore for
high vacancy densities in agreement with the disappear-
ance of the transition evoked in the previous part.

5 Phase diagram

5.1 Representation of the phase diagram

We are now in position to build the full (ρ, T ) phase di-
agram. We have seen that the system can end up in four
possible states:

(i) segregated state;
(ii) mixed state;
(iii) diluted segregation state;
(iv) frozen state.

The domains of existence of these ‘phases’, represented in
the phase diagram, Figure 10, can be briefly described as
follows:

(1) for vacancy densities below 46% a dynamical tran-
sition line Tf(ρ) separates the frozen state from the
segregated one;

(2) above this line the segregated state exists in a large
domain bounded by a transition line Tc(ρ);

(2a) This line is almost at a constant value of the tol-
erance for ρ � 50%, and of a discontinuous nature
(first-order like) up to ρ = 50%; it separates the seg-
regated state from the mixed state;

(2b) at ρ = 50%, the transition becomes continuous, and
the line becomes almost parallel to the T axis; there
it separates the segregated state from a diluted seg-
regated one;
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Fig. 10. Phase diagram of the studied Schelling model. The
blue crosses correspond to the continuous transition between
the segregated and dilute segregated states. The red triangles
and pulses are the upper and lower limits of the transition
between the frozen and segregated states. The red lines sepa-
rate the segregated state from the mixed one. Note that the
tolerance T only takes discrete values.

(3) beyond Tc(ρ), at high values of the vacancy density
one goes gradually (no sharp transition) from the
diluted segregated state at low T to the mixed one
at high tolerance values. We now discuss in more
detail the various phases and transitions involved.

5.2 Transition frozen state/segregated state

At low tolerance there is a transition where the system
abruptly switches from a frozen to a segregated state. The
analogues of the specific heat and of the susceptibility do
not have a singular behavior in the vicinity of the tran-
sition (Figs. 8 and 9). As we have seen, this is explained
by the dynamical nature of this transition – in contrast to
the other transitions which are thermodynamical-like. We
locate the transition by looking at the jump of the segre-
gation coefficient, both at fixed ρ, increasing T (Fig. 3),
and at fixed T , increasing ρ (Fig. 11). As the density of
vacancies ρ increases, the transition occurs for lower val-
ues of the tolerance. When this density is higher than 46%
this line of transition does not exist anymore.

We remark that for a given vacancy density, the ex-
act value of the tolerance at which the frozen-segregated
state transition takes place may depend on the order in
which the agents are chosen during the dynamics (see Ap-
pendix A, Tab. A.1, for details). Let us notice that inside
this frozen phase, any initial configuration, segregated or
not, with randomly distributed vacancies is very close to
a stationary state.

5.3 Transition segregated state/mixed state

The segregated phase is upper bounded by a transition
line where the clusters disappear and the two types of
agents become mixed.

Fig. 11. Segregation coefficient for different values of the
tolerance versus the vacancy density.

– This change is abrupt for vacancy densities ρ < 26%.
Indeed, the plots of the segregation coefficient against
the tolerance for values of ρ in this range show a jump
from ∼1 to ∼0 (Fig. 3).

– For 26% ≤ ρ ≤ 48%, the mixed state is reached after
an intermediate state where the system has no dynami-
cal stability: it can oscillate between several acceptable
configurations, leading to large fluctuations in the seg-
regation coefficient.

– For a small range of values, 50% ≤ ρ � 56%, the segre-
gated states continously become mixed states. There,
the line abruptly turns downward. This area of the
phase diagram, with a change in the nature of the tran-
sition and a sudden downturn of the transition line, is
more difficult to study because of the discreteness of
T values and possible finite size effects.

For a given ρ the value of the tolerance at which the
segregated-mixed transition occurs can be located from
the position of the peak of the analogue of either the spe-
cific heat or of the susceptibility (Figs. 8 and 9). In order
to complete the study of this transition, we have consid-
ered the distribution of the segregation coefficient for sev-
eral values of T around the transition at different vacancy
densities (see Appendix A). This illustrates the three ways
to go from a segregated to a mixed state.

5.4 Transition segregated state/diluted segregation
state

As just mentioned, the boundary Tc(ρ) of the segregated
phase becomes weakly dependent on the vacancy density ρ
when ρ becomes slightly larger that 50%. To locate the
transition line we plot for several values of T the varia-
tion with ρ of the segregation coefficient 〈s〉 (Fig. 11), and
of the analogue of the susceptibility χs (see Appendix A
Fig. A.4). At high vacancy densities, beyond the transi-
tion line, the nature of the phase is different at high and
low tolerances. As we have seen, at high tolerance val-
ues there is a mixed state, whereas at low tolerance one
finds a diluted segregation state that leads to very small
segregation coefficients. Indeed, at high ρ (>0.592746, the
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percolation threshold [18]), the high probability of perco-
lation of vacancies prevents the forming of large clusters.
In this high vacancy density domain, we do not find any
sharp transition from the diluted segregated state to the
mixed one, but only a gradual change as the tolerance
increases.

5.5 Comparison with the Blume-Capel phase diagram

It is instructive to compare the phase diagram with the
one of the Blume-Capel model [13,14] evoked above (see
Appendix A). For this model a transition line separates
a ferromagnetic (segregated) phase from a domain where
one goes gradually from a paramagnetic (mixed) phase to
a phase where the vacancies predominate (diluted segre-
gation). This line changes as well its nature from discon-
tinuous to continuous. However, it is the ferromagnetic-
paramagnetic transition which is second order, whereas
the segregated-mixed transition is first order-like (the
change is abrupt). Conversely, the transition between the
ferromagnetic and the high vacancy density phases is
first order, whereas the corresponding transition in the
Schelling model is continuous.

6 Conclusion

We analyzed a variant of the Schelling model from a phys-
ical point of view. We have introduced a measure of seg-
regation and analogues of physical quantities such that
the fluctuation coefficient and the susceptibility where,
remarkably, the analogy between the tolerance and the
temperature proves fruitful. These quantities allowed to
identify the different phases of the system and charac-
terize the transitions between them (thermodynamical or
dynamical like, discontinuous or continuous). The main
results have been summarized as a phase diagram in the
(ρ, T )-plane where ρ is the vacancy density and T the tol-
erance. Considering larger neighborhoods would allow to
have a larger set of values for T and approach a continuous
model. A more precise location of the phase boundaries, if
needed, would require computationally costly simulations
of larger network sizes.

We have seen in particular that the segregated phase
occupies a large domain (up to a tolerance T as high as
3/4), confirming Schelling’s intuition on the genericity of
the segregation phenomenon. The abrupt transition from
a mixed to a segregated state could be interpreted as the
tipping point – more precisely the rapid ethnic turnover –
observed and studied by social scientists [23]. Besides, the
diluted segregation state might be relevant for low-density
suburban areas. The frozen state would probably be un-
stable in a more realistic model allowing for migratory
flows of discontent agents to other cities.

The tools and methods presented here could be used
to study other Schelling-like models, in particular variants
with heterogeneity. The study of cases with asymmetry
between the agents, which could lead to more complex
dynamics, will need additional tools. Clearly future works

should focus on models grounded on empirical data and
where the agent decision rules take into account relevant
socio-economic factors [4]. Yet it is known from a large
body of work in statistical physics that one needs also to
explore more widely the space of models in order to iden-
tify what makes a particular behavior specific or generic.
As already mentioned our goal here was to provide generic
tools for the analysis of models of socio-dynamics. The
variant of Schelling’s segregation model we have studied
as a test of our approach has the advantage of being iden-
tical or very close to variants already studied in the liter-
ature and to allow links with known – and non trivial –
spin models.
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l’Enseignement Supérieur et de la Recherche, allocated by the
Ecole doctorale de Physique de l’UPMC – ED 389. J.V. and
J.P.N. are CNRS members. This work is part of the project
‘DyXi’ supported by the SYSCOMM program of the French
National Research Agency (grant ANR-08-SYSC-008).

Appendix A

A.1 Numerical simulations

All the simulations except in Figure 1 were performed on
a 50 × 50 lattice. We tested all the meaningful values of
the tolerance T at even values of the vacancy percentage
ρ. With this choice for ρ, the number of vacancies and of
agents of two colors are exactly equal to the integers ρ∗L2

and L2(1 − ρ). To take only even values of the vacancy
percentage ρ also allows to moderate the computational
cost.

A.2 Real-space renormalization procedure

To identify clusters at a larger scale, we performed the
following renormalization procedure. We divide the lattice
into squares of 4 sites. On each of these little squares, we
look at the bottom right site:

– if this site and its neighborhood comprise a majority
of blue (resp. red) agents, the 2× 2 square is replaced
by a (single) blue (resp. red) agent;

– if this site and its neighborhood consist of a majority
of vacancies, the 2×2 square is replaced by a vacancy;

– if there is no majority, the 4-site square is replaced by
an agent of the same type as the bottom right site (or
by a vacancy if that site is empty).

A.3 Contact with spin-1 models

A.3.1 Energy of Schelling models

For completeness we present here a correspondence, dis-
cussed elsewhere [24], between Schelling segregation mod-
els and spin-1 models.
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Table A.1. “Frozen state-segregated state” transition line. The limits between which the system may end in a frozen state
or segregated state depending on the order of the dynamics are obtained by performing 100 tests on which we look at the
percentage of “frozen states”. If for given T and ρ, the percentage of frozen states (resp. segregated states) is very high (>95%),
we consider that the corresponding equilibrium configuration is a frozen one (resp. segregated).

ρ 2% 4% 6% 8% 10% 12% 14% 16%

T
1

2

1

2

2

5
− 1

2

3

8
− 3

7

3

8

3

8

3

8

1

3
− 3

8

ρ 18% 20% 22% 24% 26% 28% 30% 32%

T
1

3
− 3

8

1

3

1

4
− 1

3

1

4
− 1

3

1

5
− 1

4

1

5
− 1

4

1

5

1

5

ρ 34% 36% 38% 40% 42% 44% 46%

T
1

5

1

5

1

5

1

5

1

6
− 1

5

1

8
− 1

5

1

8

One can associate to each site i of the lattice a spin
variable ci, taking the value 0 if the location is not occu-
pied, and 1, resp. −1, for red, resp. blue, occupied sites.
With these ‘spin-1’ variables the satisfaction condition for
location i (including the case where i is vacant) can be
written as:

ci

∑

j∈(i)

cj + (2T − 1)c2
i

∑

j∈(i)

c2
j ≥ 0 (A.1)

where j ∈ (i) means j belonging to the neighborhood of
site i. This suggests to define, as an analogue of the energy,

ES = −
∑

〈i,j〉
cicj − K

∑

〈i,j〉
c2
i c

2
j , (A.2)

where K = 2T − 1 (−1 ≤ K ≤ 1), and the index S stands
for “Schelling”.

For the Schelling original model, as well as for other
variants where only unsatisfied agents can move, one can
show [24] that the energy ES is indeed a Lyapunov func-
tion, that is a quantity which decreases with time during
the dynamics, driving the system towards a fixed point.
Note that the energy is not proportional to the global util-
ity U =

∑
i ui, where ui is 1 if agent i is satisfied, and 0

otherwise.
This function ES , (3), is identical to the energy of the

Blume-Emery-Griffiths model [12] under the constraint
that the number of sites of each type (0,±1) is kept fixed.
This spin-1 model, and the Blume Capel model [13,14]
corresponding to the particular case K = 0, have been
used in particular to modelize binary mixtures and al-
loys in the presence of vacancies. In the standard versions
of these models, the energy contains the additional term
D

∑
i ci

2 (the sum being over all the sites), so that the
total number of vacancies is fixed only in average through
the Lagrange multiplier D:

EBEG = −
∑

〈i,j〉
cicj − K

∑

〈i,j〉
c2
i c

2
j + D

∑

i

ci
2. (A.3)

The limit D → −∞ corresponds to the absence of vacan-
cies, i.e. the Ising model. Large positive D corresponds

to high vacancy densities. The term D does not appear
in the energy of the Schelling model, not because it cor-
responds to D = 0, but because the density of vacan-
cies is fixed. The fact that ES is a Lyapunov function for
the Schelling model where only unsatisfied agents move,
means that such a model is equivalent to a Blume-Emery-
Griffiths model without thermal noise (zero temperature),
and under kinetic constraints (e.g., no direct exchange be-
tween two agents of different colors is allowed).

The standard order parameters for these spin-1
systems are the magnetization (1/N)

∑
i ci and the

quadrupole moment, (1/N)
∑

i c2
i , but here these quan-

tities which are, respectively, the difference between the
total numbers of agents of different colors, and the den-
sity of occupied sites, are kept fixed by construction in the
Schelling model.

A.3.2 Blume-Capel model: phase diagram

A striking similarity exists between the phase diagram in
the (ρ, T ) plane of the variant of the Schelling model stud-
ied here, and the one of the Blume-Capel model [13,14] in
the (D, T ) plane – where T is the temperature and D the
parameter fixing in average the vacancy density.

The Blume-Capel phase diagram, computed for the
Moore neighborhood, is shown in Figure A.1, and should
be compared with the one in Figure 10. The red part of the
transition line corresponds to a first-order (discontinuous)
transition, and the blue part to a second-order (continu-
ous) transition. Below the transition line the system is in
an ordered, ferromagnetic, state. Above the transition line,
at low and medium values of D, one finds the unordered,
paramagnetic, phase, and at large D and low temperature,
a vacancy dominated phase. In the latter phase, the typi-
cal configurations are not strictly comparable to the ones
of the corresponding phase in the Schelling model: in the
spins models, the clusters are compact whereas it is not
the case in the Schelling model. In the Blume-Capel model
there is no frozen phase, because there is no constraint on
the dynamics.

The transition line in the Blume-Capel model, shown
in Figure A.1, has been built up by plotting for fixed
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Fig. A.1. Phase Diagram of the Blume Capel model with first
and second neighours interactions (Moore neighborhood). The
simulations were performed using the Heat Bath algorithm.

temperature T (resp. fixed D depending on the area of the
diagram dealt with) the magnetization versus D (resp. T )
for three different sizes, and by looking at the value of D
(resp. T ) corresponding to the intersection of the three
curves.

A.4 Complementary analysis of the segregation model

A.4.1 Density of satisfied agents

The density of satisfied agents is a good indicator of the
convergence of the system towards its stationary state
(whenever it exists), in which the fraction of satisfied
agents is constant. Figure A.2 shows the evolution of the
density of satisfied agents for a case with low vacancy den-
sity ρ = 5% and moderate tolerance T = 0.5. We note
that, in the unstable part of the phase diagram (close to
Tc at 26% ≤ ρ � 50%), the density of satisfied agents
is stationary: this shows that, more generally, the conver-
gence of the fraction of satisfied agents does not guarantee
that the system itself has reached a steady state.

A.4.2 Unwanted vacancies

The variation with the tolerance of the unilaterally un-
wanted density of vacancies ρ̃ (Fig. A.3) confirms that the
mixed situation observed for low values of T is due to the
dynamics. The agents reject all the empty spaces, con-
sequently the system cannot evolve. At tolerances corre-
sponding to the frozen state – segregated state transition,
the situation reverses. All vacancies are acceptable for at
least one type of agents.

A.4.3 Analogue of the susceptibility

The analogue of the susceptibility for the Schelling model
is given by:

χs =
〈s2〉 − 〈s〉2

T
, (A.4)

Fig. A.2. Evolution of the proportion of satisfied agents ver-
sus the number of steps for ρ = 5% and T = 0.5. About 60% of
the agents are initially satisfied. The dynamics quickly allows
the agents to be almost all satisfied, after only 10 steps the
density of satisfied agents is very close to 1. It increases slowly
afterwards, with small fluctuations due to the possibility for
satisfied agents to keep moving.

Fig. A.3. Density ρ̃ of vacancies where no type of agent would
be satisfied, for several values of the vacancy density.

Fig. A.4. Analogue of the susceptibility for different values
of the tolerance versus the vacancy density. The averages have
been computed on 30 000 simulations after equilibrium.

where the notation 〈 〉 means an average over the configu-
rations taken by the system after reaching equibrium, and
T is the tolerance. These fluctuations allow to locate the
transition at fixed tolerance T as the density of vacancies
increases.
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Fig. A.5. Variation of the analogue of the specific heat ob-
tained from the Blume-Capel energy for different values of the
vacancy density.

A.4.4 Blume-Emmery-Griffiths energy vs. Blume-Capel
energy

We have shown that the appropriate energy related to the
Schelling model is the Blume-Emmery-Griffiths energy at
constant number of sites of each type (red and blue agents,
and vacancies), defined by (A.2). However we find that
the analysis of the transitions can be done as well from
the Blume-Capel energy, that is here, since the number of
sites of a given type is fixed (no D-term):

EBC = −
∑

〈i,j〉
cicj . (A.5)

Note that in the absence of vacancies, ci = ±1 so that
EBC would reduce to the standard Ising energy. One finds
that the fluctuation coefficient obtained with the Blume-
Capel energy, defined by C′

s = 〈E2
BC〉−〈EBC〉2

T 2 and shown
in Figure A.5, is very similar to the one obtained from
the Schelling energy ES . Actually, in the evolution of the
mean of the total energy ES , shown in Figure A.6, one
recognizes the contribution from the Blume-Capel energy
EBC (shown in Fig. 7), simply increased by an additional
term linear in K = 2T − 1. These observations can be
explained by the fact that the difference between these
two energies is proportionnal to the numbers of pairs of
occupied sites of which the fluctuations are weak. Indeed,
one observes that the vacancies remain approximatively
uniformly distributed. This comes from the fact that each
agent searches for locations where the number of unlike
neighbors is inferior to a given proportion of the num-
ber of neighbours. Note that the vacancies would not be
uniformly placed if each agent wanted less than a fixed
number of unlike neighbors, as considered in [15].

A.4.5 Segregation coefficient

In order to get more information about the segregated
state-mixed state transition, it is instructive to look at
the distribution of the segregation coefficient 〈s〉 in the

Fig. A.6. Variation of the mean of the energy ES for differ-
ent values of the vacancy density. The data are normalized by
4L2(1 − ρ).

Fig. A.7. Distributions (normalized by the number of mea-
sures) of the segregation coefficient for ρ = 24% and ρ = 28%.

Fig. A.8. Distribution of the segregation coefficient for ρ =
44% and ρ = 50%.

vicinity of the transition (Figs. A.7 and A.8). The distri-
butions have been obtained from 30 000 calculations of the
segregation coefficient.

At vacancy density ρ lower than 26%, the transition
is well marked. This distribution is centered near 0 at the
transition point whereas it is centered near 1 at the closest
inferior value of the tolerance. Indeed, the distributions of
the segregation coefficient for successive tolerances around
the transition are clearly separated for the vacancy density
ρ = 24% (left Fig. A.7).

As ρ increases, the transition is achieved via an inter-
mediate state. One distinguishes three kinds of distribu-
tions (Figs. A.7, right and A.8, left) which are centered
around a very small value (∼0.2), peaked close to 1, or
centered around an intermediate value. The latter case
corresponds to a broader distribution.
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Once the vacancy density is greater than 50%, all the
distributions of the segregation coefficient begin to blend
together (see Fig. A.8, right). This confirms that the in-
crease in the vacancy density is accompanied by a change
in the nature of the transition between 46% and 50%,
which becomes continuous.

A.4.6 “Frozen-segregated” transition line

The transition line between the frozen and the segregated
states has been determined by locating the jump of the
segregation coefficient 〈s〉 from ∼0 to ∼1. The initial con-
figuration and the order of choice of the agents, when
the dynamics is applied, create fluctuations on the limit
between the two states. Actually, for some sets of parame-
ters (ρ, T ), the system may end either in blocked or in seg-
regated configurations depending on the order of choices
of the agents. One cannot exclude that this unstable do-
main is due to finite size effects, hence disappearing in the
infinite network size limit. However, it is not surprising
to find such a metastability effect close to a discontinuous
transition.
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