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We study the temporal evolution of the structure of the world’s largest subway networks in an
exploratory manner. We show that, remarkably, all these networks converge to a shape that
shares similar generic features despite their geographical and economic differences. This limit-
ing shape is made of a core with branches radiating from it. For most of these networks, the
average degree of a node (station) within the core has a value of order 2.5 and the proportion
of k ¼ 2 nodes in the core is larger than 60 per cent. The number of branches scales roughly as
the square root of the number of stations, the current proportion of branches represents about
half of the total number of stations, and the average diameter of branches is about twice the
average radial extension of the core. Spatial measures such as the number of stations at a
given distance to the barycentre display a first regime which grows as r2 followed by another
regime with different exponents, and eventually saturates. These results—difficult to inter-
pret in the framework of fractal geometry—confirm and yield a natural explanation in the
geometric picture of this core and their branches: the first regime corresponds to a uniform
core, while the second regime is controlled by the interstation spacing on branches. The
apparent convergence towards a unique network shape in the temporal limit suggests the
existence of dominant, universal mechanisms governing the evolution of these structures.

Keywords: evolution of networks; urban transportation; spatial networks;
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1. INTRODUCTION

Transportation systems, especially mass transit, are an
important component in cities and their expansion. In
a world where more than 50 per cent of the population
lives in urban areas [1], and where individual trans-
portation increases in cost as cities grow larger, mass
transit and, in particular, subway networks are central
to the evolution of cities, their spatial organization
[2–4] and dynamical processes occurring in them [5,6].
The percentage s(P) of cities with a subway system
versus their population size P is shown in figure 1 (the
data were obtained for cities with a population larger
than 105 (http://unstats.un.org/)), which confirms
that the larger a city, the more likely it is to have
some form of mass transit system (see also [7]).
Approximately 25 per cent of the cities having more
than one million individuals, 50 per cent of those
having more than two million and all those having
orrespondence (roth@ehess.fr).
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above 10 million have a subway system (as an indi-
cation, an exponential fit of the plot in figure 1 gives
sðPÞ ¼ 1� expð�P=P0Þ where the typical population
P0 is in the order of three million).

For some cities, subway systems have existed for
more than a century. Fascination with the apparent
diversity of their structure has led to many studies
and to particular abstractions of their representation
in the design of idealized transit maps [8], and although
these might appear to be planned in some centralized
manner, it is our contention here that subway systems
like many other features of city systems evolve and
self-organize themselves as the product of a stream of
rational but usually uncoordinated decisions taking
place through time.

Generally speaking, subway systems have been devel-
oped to improve movement in urban areas and to
reduce congestion. The early history of subways is
sometimes connected to large-scale planning, for
instance with the need to bring people from a growing
periphery to the centre of the city where traditionally
This journal is q 2012 The Royal Society
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Figure 1. Percentage of cities with a subway system versus the
population (data from the UN (http://unstats.un.org/)).
(Online version in colour.)
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production and exchange usually take place. More
broadly, it might seem that subway systems are engin-
eered systems and intentionally structured in a core/
periphery shape with their self-organization thus play-
ing only a very minor role. This actually would be
true if these subway systems were planned from their
beginning to their current shape, but this is not the
case for most networks. Their shape results from
multiple actions, from planning within a time-limited
horizon, set within the wider context of the evolution
of the spatial distribution of population and related
economic activities. We thus conjecture that subway
networks actually result from a superimposition of
many actions, both at a central level with planning
and at a smaller scale with the reorganization and
regeneration of economic activity and the growth of
residential populations. In this perspective, subway sys-
tems are self-organizing systems, driven by the same
mechanisms and responding to various geographical
constraints and historical paths. This self-organized
view leads to the idea that—beside local peculiarities
due to the history and topography of the particular
system—the topology of world subway networks dis-
play general, universal features within the limits of
the physical geometry and cultural context in which
their growth takes place.

The detection and characterization of these features
require us to understand the evolution of these spatial
structures. Indeed, subway networks are spatial [9–11]
in the sense that they form a graph where stations are
the nodes and links represent rail connections. We now
understand quite well how to characterize a spatial net-
work but we still lack tools for studying their temporal
evolution. The present article tackles this problem, pro-
posing various measures for these time-dependent,
spatial networks.

Here we focus on the largest networks in major world
cities and thus ignore currently developing, smaller net-
works in many medium-sized cities. We thus consider
most of the largest metro networks (with at least one
hundred stations) which exist in major world cities.
These are: Barcelona, Beijing, Berlin, Chicago,
London, Madrid, Mexico, Moscow, New York City
J. R. Soc. Interface
(NYC), Osaka, Paris, Seoul, Shanghai and Tokyo, for
which we show a sample in figure 2. Additionally, we
focus on urban subway systems and do not consider
longer-distance heavy and light-rail commuting systems
in urban areas, such as Réseau Express Régional (RER)
in Paris or overground NetworkRail in London.

Static properties of transportation networks have
been studied for many years [12] and, in particular,
simple connectivity properties were studied in [13],
while fractal aspects were considered in [14]. With the
recent availability of new data, studies of transportation
systems have accelerated [11] and this is particularly so
for subway systems [15–23]. These studies have revealed
some significant similarities between different networks,
despite differences in their historical development and
in the cultures and economies in which they have been
developed. In particular, their average shortest path
seems to scale with the square root of the number of
stations and the average clustering coefficient is large,
consistent with general results associated with two-
dimensional spatial networks [11]. In the study of
Sienkiewicz & Holyst [17], a strong correlation between
the number of stations (for bus and tramway systems)
and population size has been observed for 22 Polish
cities, but such correlations are not observed at the
world level (for all public transportation modes [21]).

Our empirical analysis of the evolution of these trans-
portation networks is in line with approaches developed
in the 1970s (see [24] and references therein) but we
take advantage here of recent progress made in the
understanding of spatial networks in general and new
historical data sources that provide us with detailed
chronologies of how these networks have developed.
1.1. Data

The network topologies at various points in time were
built using two main data sources. First, current net-
work maps as for 2009 were used to define lines for
each network, and then to define line-based topologies,
i.e. which station(s) follow(s) which other station(s) on
each line. This information was then combined with
opening dates for lines and stations. This second type
of data has been gathered from Wikipedia (http://
www.wikipedia.org): for most networks, there is one
page per station with various information, including
the first date of operation, the precise location and
address, number of passengers, etc. The network build-
ing process for a given year t is then as follows. The list
of open lines at year t is first established. For each open
line, open stations at year t are listed and connections
are created between contiguous stations according to
the network topology. A station that is not open at
year t on the given line, even if it is already open on a
different line, is evidently discarded for the construction
of the line. Eventually, those independent line topolo-
gies are gathered into the subway graph corresponding
to year t. Note that we used 2009 topologies as it was
relatively difficult to find and process network maps
for all these networks for each year of their existence.
As a result, topologies for any given year before 2009
may overlook topology features pertaining to station
or line closures: for instance, a station that existed
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Figure 2. A sample of large subway networks in large urban areas, all displaying a core and branches structure. From left to right
and top to bottom: Shanghai, Madrid, Moscow, Tokyo, Seoul, Barcelona (figures from Wikimedia Commons (http://commons.
wikimedia.org)). (Online version in colour.)

Table 1. List of various indicators (for the year 2009) for the major subway networks considered in this study (and sorted
according to their metro population). P is the metropolitan area population (for 2009). NL is the number of lines, N the number
of physical stations, ‘1 is the average interstation distance, ‘T total route length, ‘regT the total route length for a regular graph
with the same average degree, area and number of stations and b the final ratio between branch and core stations.

city P (millions) NL N ‘1 (km) ‘T (km) ‘T=‘
reg
T b (%)

Beijing 19.6 9 104 1.79 204 0.14 39
Tokyo 12.6 13 217 1.06 279 0.13 43
Seoul 10.5 9 392 1.39 609 0.39 38
Paris 9.6 16 299 0.57 205 0.18 38
Mexico City 8.8 11 147 1.04 170 0.15 39
NYC 8.4 24 433 0.78 373 0.12 36
Chicago 8.3 11 141 1.18 176 0.08 71
London 8.2 11 266 1.29 397 0.20 47
Shanghai 6.9 11 148 1.47 233 0.21 61
Moscow 5.5 12 134 1.67 260 0.16 71
Berlin 3.4 10 170 0.77 141 0.30 60
Madrid 3.2 13 209 0.90 215 0.42 46
Osaka 2.6 9 108 1.12 137 0.88 43
Barcelona 1.6 11 128 0.72 103 0.32 38
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between 1900 and 1940 and that remained closed until
now will not appear in any of our network datasets
(such is the case for the British Museum Tube station).
We suggest, however, that the effect of this bias is lim-
ited: on the one hand, generally few stations undergo
closure in the course of the network evolution; on the
other hand, these stations are rarely hubs, most often
intermediary stations (of degree 2, i.e. connected to
two stations), thus their non-inclusion bears little
topological impact.
2. EXPLORING STATIC PROPERTIES

The main characteristics of the networks we have chosen
are shown in table 1 where we first observe that the
number of different lines appears to increase incremen-
tally with the number of stations and that on average,
J. R. Soc. Interface
for these world networks, there are approximately 18
stations per line. Also, the mean interstation distance is
on average ‘1 � 1 km with Beijing and Moscow showing
the longest ones (1.79 and 1.67 km, respectively), and
Paris displaying the shortest one (570 m), a diversity
which finds its origin in the different historical paths of
these networks. Other quantities such as the catchment
area (the average number of individuals served by one
station) could be computed but should be used with
care: residential and economic activity density vary
strongly across space and back-of-the-envelope argu-
ments should only serve as a guide. Generally speaking,
many parameters such as the population density, land
use activity distribution and traffic are important drivers
in the evolution of those networks, but we will focus in
this first study on the characterization of these networks
in terms of space and topology, independently of other
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Table 2. t0 is the initial year considered here for the different
subways networks, �y is the average velocity (number of
stations built per year), sy is the standard deviation of v and
f is the fraction of years of inactivity (no stations built).

city t0 �y sy f (%)

Beijing 1971 3.3 7.74 79
Tokyo 1927 2.8 5.47 51
Seoul 1974 11.2 14.9 20
Paris 1900 2.6 5.1 60
Mexico City 1969 3.7 5.9 55
NYC 1878 3.3 8.3 68
Chicago 1901 1.9 6.24 71
London 1863 2.3 3.8 48
Shanghai 1995 14.9 20.2 31
Moscow 1936 1.7 1.9 43
Berlin 1901 1.6 3.3 65
Madrid 1919 2.3 4.6 59
Osaka 1934 1.4 4.1 79
Barcelona 1914 1.4 4.8 78
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socio-economical considerations. A later extension of this
research could examine these physical and topological
properties with respect to various definitions of density
which might include different activity types and various
combinations related to the traffic that they generate.

To get some initial insight into the topology of these
networks, one can first compare the total length ‘T of
these networks to the corresponding quantity computed
for an almost regular graph ‘regT with the same number
of stations, area and average degree (the ‘degree’ of a
node is the number of its neighbours in a graph). For
a random planar graph with small degree fluctuations
(k � kkl) and small fluctuations of the spatial distri-
bution of nodes, we can consider that the internode
spacing is roughly constant and given by ‘0 � 1=

ffiffiffi
r
p

where r ¼ N/A is the density of nodes defined as the
number of nodes over the total area comprising all the
nodes. The total length is then the number of edges
E ¼ Nkkl/2 times ‘0 which leads to [11]

‘regT � kkl
2

ffiffiffiffiffiffiffiffi
AN
p

: ð2:1Þ

In real applications, the determination of the quantity A
is a difficult problem, but here we choose to use the metro-
politan area as given by the various data sources. As
shown in the table 1, the ratio ‘T=‘

reg
T varies from 0.08

to 0.88, has an average of order 0.29 and displays essen-
tially three outliers. First, Osaka (and also Madrid and
Seoul) has a very large value indicating a highly reticu-
lated structure. In contrast, Chicago and NYC have a
much smaller value (�0.1) signalling a more hetero-
geneous structure, which in both these cases is probably
due to their strong geographical constraints.

The total length and the comparison with a regular
structure gives a first hint about the structure of these
networks but other indicators are needed to get a more
focused view. There exist many different indicators and
variables that describe these networks and their evol-
ution. An important difficulty thus lies in the choice of
the many possible indicators and how to extract useful
information from them. In addition, the largest networks
have a relatively small number of stations (always smal-
ler than 500), which implies that we cannot expect to
extract useful information from the probability distri-
butions of various quantities as the results are too
noisy. We thus have to compute more globally structured
indicators which are, however, sensitive to the usually
small temporal variations associated with these net-
works. In the following, we will focus on a certain
number of these indicators, which we consider to be
the most informative at this point.

Finally, we will focus in this study on purely spatial
and topological properties: we will consider the
evolution in space of these subway networks and we
will not consider any other parameters that might be
used to characterize urban growth. Our study is
exploratory and thus a first step towards the integration
of the most important factors into this research and
despite its simplicity, in that we focus almost entirely
on geometrical attributes, we consider that the evol-
ution of the topology encodes many different factors
J. R. Soc. Interface
and that its study can point to some important general
mechanisms governing the evolution of these networks.
3. NETWORK DYNAMICS

To get an initial impression of the dynamics of these net-
works, we first estimate the simplest indicator v ¼ dN/
dt, which represents the number of new stations built
per year. From the instantaneous velocity, we can com-
pute the average velocity over all years. This average
can, however, be misleading as there are many years
where no stations are built and thus we describe this
by the fraction of ‘inactivity’ time f. We provide results
for the networks considered in table 2 from which some
interesting facts are revealed. Note that it is clear that
Shanghai and Seoul are the most recent subway net-
works experiencing a rapid expansion that has elevated
them to among the largest networks in the world.

For most of these networks, the average velocity is in a
small range (typically �y [ [1.4, 3.7]) except for Seoul and
Shanghai which are more recently developed networks.
This is, however, an average velocity and we observe
that (i) for all networks, larger velocities occur at earlier
stages of the network and (ii) large fluctuations occur
from one year to another. Interestingly, the fraction of
the inactivity time (i.e. the time when no stations are
built) is similar for all these networks with an average
of about 58 per cent. We also show in figure 3a, the
time evolution for each city of the number of stations,
using an absolute timescale. In particular, the sizes of
the oldest networks seem to progressively reach a plateau.

To make growth comparable across all networks, we
introduce a second graph on figure 3b featuring the
average, over all networks, of the number of stations
after a certain number of years since the creation of
the network. This average quantity exhibits a linear
increase which indicates convincingly that, overall, as
these networks become large, for a few decades there-
after, new stations represent an increasingly small
percentage of the existing ones. In other words, the
time evolution of all these networks is characterized
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by small additions and not by sudden, abrupt changes
with a large number of stations added in a small time
duration. This first result anticipates the fact that
these large networks may reach some kind of limiting
shape that we will characterize in §3.1. This incremental
growth of subways might reflect socio-economical con-
cerns and pressure on the transportation networks
such as diminishing return on investments as noted
by various authors (see, [25] for US highways).

Finally, when we study the evolution of various indi-
cators versus the number N of stations, an important
point for our statistical analysis will be the number of
subways with a given number N at a given time t.
We show this quantity in figure 4 and we can see
that, for N [ [25, 100] approximately, this number is
the largest (almost 15—note that this figure is nonethe-
less too small to allow a discussion of the normality of
the various quantities considered below). Unfortu-
nately, for larger values of N the number of cities is
naturally smaller, and at this stage we cannot give
definitive answers but suggest some limits for large N.
3.1. Characterization of the core and branches
structure

The large subway networks considered here thus con-
verge to a long-time limit where there is always an
increasingly smaller percentage of new stations added
through time. The remarkable point that we will show
below is that all these networks, despite their geo-
graphical and economical differences, converge to a
shape that exhibits several typical topological and
spatial features. Indeed, by inspection, we observe
that in most large urban areas, the network consists
of a set of stations delimited by a ‘ring’ that constitute
the ‘core’. From this core, quasi-one-dimensional
branches grow and reach out to areas of the city further
and further from the core. In figure 2, we show a sample
of these networks as they currently exist. We note here
that the ring, which is defined topologically as the set of
core stations that are either at the junction of branches
or on the shortest geodesic path connecting these junc-
tion stations, exists or not as a subway line. For
J. R. Soc. Interface
instance, for Tokyo, there is a such a circular line
(called the Yamanote line), while for Paris the topologi-
cal ring does not correspond to a single line. It is also
worth noting that in those systems where the core is
harder to define such as NYC where physical con-
straints are strongly manifest (the east and west rivers
which bound Manhattan), a pseudo core is evident
where a series of lines coalesce to enable travellers to
move around the core circumferentially.

More formally, branches are defined as the set of
stations that are iteratively built from a ‘tail’ station,
or a station of degree 1. New neighbours are added to
a given branch as long as their degree is 2—continuing
the line, or 3—defining a fork. In this latter case, the
aggregative process continues if and only if at least
one of the two possible new paths stemming from the
fork is made up of stations of degree 2 or less. Note
that the core of a network with no such fork is thus a
k-core with k ¼ 2 [26].

The general structure can schematically be represented
as in figure 5.

We first characterize this branch and core structure
with the parameter b(t) defined as

bðtÞ ¼ NBðtÞ
NBðtÞ þ NCðtÞ

; ð3:1Þ

http://rsif.royalsocietypublishing.org/
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Figure 5. Schematic of subway networks. A large ‘ring’ encir-
cles a core of stations. Branches radiate from the core and
reach further areas of the urban system. The branches are
essentially characterized by their size (parameter b(t),
equation (3.1)), and their spatial extension (parameter h(t)
in equation (3.2)). The core is characterized by its average
degree (kkcorelðtÞ defined in equation (3.3)) and fraction of
nodes of degree 2 (f2), its number of stations NC(t) and its
size rC(t). Green circles denote junction; red, terminus.
(Online version in colour.)
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where NB(t) and NC(t), respectively, represent the
number of stations on branches and the number of
stations in the core at time t.

We can also further characterize the structure of
branches. Their topological properties are trivial and
their complexity resides in their spatial structure.
We can then determine the average distance (in kilo-
metres) from the geographical barycentre of the city
to all core and branch stations, respectively: �DCðtÞ and
�DBðtÞ (the barycentre is computed as the centre of
mass of all stations, or in other words, the average
location of all the stations). This last distance provides
information about the spatial extension of the branches
when we can form the ratio h(t):

h tð Þ ¼
�DB tð Þ
�DC tð Þ

ð3:2Þ

which gives a spatial measure of the amount of extension
of the branches.

We also need information on the structure of the core.
The core is a planar (which is correct at a good accuracy
for most networks) spatial network and can be character-
ized by many parameters [11]. It is important to choose
those that are not simply related but ideally represent
different aspects of the network (such as those proposed
in the form of various indicators; see, for example,
[11,12,27]). At each time step t, we will characterize
the core structure by the following two parameters.
The first parameter is simply the average degree of the
J. R. Soc. Interface
core which characterizes its ‘density’:

kkcorelðtÞ ¼
2ECðtÞ
NCðtÞ

; ð3:3Þ

where NC(t) is the number of core nodes and EC(t) the
number of its edges. The average degree is connected
to the standard index gðtÞ ¼ ECðtÞ=ð3NCðtÞ � 6Þ where
the denominator is the maximum number of links admis-
sible for a planar network [12].

The average degree of the core contains useful
information about it, and there are many other quan-
tities (such as standard indices such as a, etc.; see,
[12]) which can give additional information. We will
use another simple quantity which describes in more
detail the level of interconnections in the core and
which is given by the fraction f2 of nodes in the core
with k ¼ 2. In the case of the well-interconnected
system, this fraction will tend to be small, while
sparse cores with a few interconnections will have a
larger fraction of k ¼ 2 nodes.

Once we know this fraction f2 of k ¼ 2 nodes in the
core, which characterizes the level of interconnection
and the parameter h(t), which characterizes the relative
spatial extension of branches, we have key information
on the intertwinement of both topological and
geographical features in such ‘core/branch’ networks.
3.2. Time evolution of b, kkcorel, f2 and h

The historical development of these networks is very
different from one city to another and representing
the evolution of a specific quantity versus time would
probably not be particularly meaningful. Similarly,
city networks often experience significant development
in some particular years, while they experience little
or no evolution for the rest of the time. To be able to
compare the networks across time periods and cities,
we propose to study their evolution in terms of the
number of stations N that are constructed.

We first plot in figure 6a the parameter b as a func-
tion of N for the networks studied here. It is difficult to
draw strong conclusions from this plot, but we can bin
these data and represent the average value of b per
bin and its dispersion as well (figure 6b). In this
figure, we may see that the average value of b seems
to stabilize slowly to some value in [0.35, 0.55].

It is also important to characterize the spatial impor-
tance of the branches. The parameter h gives a precious
indication about their extension and we show in figure 7
the evolution of this parameter with N (the data are
binned). This figure shows that in the interval where
we have the largest number of subways, the average
value of h is around 2 with relatively large fluctuations
which seem to decrease with N.

The parameters b and h give an indication of the
importance of the core but do not say anything about
its structure. A first structural indication may be
given by its average degree kkcorel and by the percen-
tage of nodes in the core having a degree k equal to 2.
In particular, these two quantities shed light on how
interconnections are created in the core. We display in
figure 8a the average degree of the core kkcorel which,
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even if there is a slow increase with N, displays
moderate variations around 2.4 approximately.

This value is relatively small and indicates that the
fraction of connecting stations (i.e. with k . 2) is also
small and means that most core stations belong to one
single line with few that actually allow connections.
More precisely, we observe in figure 8b that, on average,
for subways with N , 100 the fraction of interconnect-
ing stations is increasing with N—which probably
corresponds to some organization of the subway—but
that for larger subways (N . 100), the percentage f2 is
increasing again, which probably corresponds to a
densification process without the creation of new
J. R. Soc. Interface
interconnections. This densification can indeed be con-
firmed as the diameter of the core (figure 9) seems to
reach a plateau for most cities.

As noted above, the number of subways with large N
is smaller and the statistics therefore less reliable. At
this point and with this statistical error in mind, we
observe that the average value b and its dispersion
are decreasing with N and suggests that b could con-
verge to some ‘limiting’ value b1 � 45 per cent. The
same remarks also apply to h and suggest a limiting
value of order 2. Concerning the core, the dispersion of
kkcorel is always moderate and approximately constant,
showing that the fluctuations among different networks

http://rsif.royalsocietypublishing.org/
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Figure 10. The log–log plot of the number of different branches
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considered here. The dashed line is a power law fit with
exponent �0.6. (Online version in colour.)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
η

40

50

60

70

80

90

Barcelona Beijing

Paris

Moscow

Tokyo

Shanghai

Seoul

Berlin
Madrid

Mexico

London

NYC

Chicago

Osaka

f 2 
(%

)

Figure 11. Relation between the spatial extension of branches
and the degree of interconnection in the core. The 2009 values
for the percentage f2 of k ¼ 2 core nodes and h are plotted for
12 city subways. (Online version in colour.)

8 Evolution of subway networks C. Roth et al.

 on February 23, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
are also moderate. We observe a slow increase of kkcorel
pointing to a mild yet continuing densification of the
core, even after a long period of time. The fraction of
connecting stations has more complex dynamics and
seems to decrease with N for large networks. In these
networks, there is an obvious cost associated with the
large value of k . 2 and such a decreasing fraction
could be due to the fact that a small fraction is
enough to enable easy navigation in the network.

In summary, our results display non-negligible fluctu-
ations but suggest that large subway networks may
converge to a long-time limiting network largely inde-
pendent of their historical and geographical differences.
So far, we can characterize the ‘shape’ of this long-time
limiting network with values of b1� 45 per cent,
h1 � 2, and a core made of approximately 80 per cent
of non-connecting stations. It will be interesting to
observe the future evolution of these networks in order
to confirm (or not) our current results.

3.3. Number of branches

We now consider the number NB of different branches. A
naive argument would be that the number of branches is
actually proportional to the perimeter of the core struc-
ture. This implicitly assumes that the distance between
different branches is constant. In turn, the perimeter
should roughly scale as

ffiffiffiffiffi
N
p

as the core is a relatively
dense planar graph and contains a number of nodes
proportional to N. These assumptions thus lead to

N B �
ffiffiffiffiffi
N
p

ð3:4Þ

We display the number of branches versus the
number of stations N for the various networks con-
sidered here. A power law fit of the data presented
in figure 10 gives NB � Nb with b � 0.6 (r2 ¼ 0.85)
consistent with our argument.

3.4. Balance between the core density and the
branch structure

Even if it seems that the values of various indicators con-
verge with the size of the networks, we still have
J. R. Soc. Interface
appreciable variations. For example, h varies from �1
to�3 and exhibits a relatively constant and not negligible
relative dispersion. It is thus important to understand
the remaining differences between these networks. To
achieve this, we focus on the relation between h which
characterizes the spatial extension of the branches relative
to the core, and the percentage f2 of k¼ 2 nodes in the
core which indicates how well connected the core is. We
focus on the ‘final’ values of these parameters obtained
for 2009 for the various networks and we obtain the
plot shown in figure 11. From this figure, we first see
that (h, f2) ranges from (�1.4, �85%) for NYC up to
(�3.3, �45%) for Moscow, which is indeed a highly
ramified network with a very dense core.

Very roughly speaking, we first observe that, for this
set of the largest subway systems in the world, the per-
centage f2 is large and above 60 per cent and relatively
independent from h. At a finer level, we observe from
this figure that clusters of networks with similar proper-
ties also emerge. The first cluster comprises Beijing,
Berlin, Shanghai and Seoul which are remarkably close
to each other: f2 is of order 80+ 5% and h(t) � 2.84+
0.1. This cluster corresponds thus to subway networks
with a large degree of ramification and a lower intercon-
nection level in their core. Not surprisingly, this cluster
comprises rapidly evolving networks such as Beijing
and Shanghai, for example. Another cluster comprises
London, Paris and Madrid with a smaller value of f2 �
70+ 5%, which might result from their denser city
centre structure and a smaller value of h � 2. This
other cluster corresponds to denser networks, less rami-
fied but with more interconnections in the core.
Finally, we can identify another cluster made of Chicago
and Osaka with a small value of h and a relatively dense
core (with f2 � 70%).
4. SPATIAL ORGANIZATION OF THE CORE
AND BRANCHES

Following earlier studies on the fractal aspects of subway
networks [14], we can inspect the spatial subway organ-
ization by considering the number of stations N(r) at a

http://rsif.royalsocietypublishing.org/


Table 3. For each city, we compute the number of stations in
the core (for the year 2009) and from the numerical
calculation of N(r) we can estimate rC the size of the core (in
kilometres) from N(r ¼ rC) ¼ NC.

City NC rC (km)

Beijing 63 4.4
Tokyo 123 5.0
Seoul 243 11.6
Mexico 90 4.7
Shanghai 57 3.7
Moscow 39 5.9
London 142 7.3
Paris 186 4.2
Madrid 113 4.4
Berlin 68 5.5
Barcelona 57 3.5
Osaka 46 3.6

10–2

10–1

1

10(a)

(b)

Barcelona
Beijing
Berlin
London
Madrid
Mexico
Moscow
Osaka
Seoul
Shanghai
Tokyo
Paris

2.0

1 10
r/rC

2.0

1.0

N
/N

C

10–2

10–1

0.1

1

101

N
/N

C

Figure 12. (a) Rescaled number of stations at distance r from
the barycentre as a function of the rescaled variable r/rC

where rC is the size of the core defined as N(r ¼ rC) ¼ NC

(shown here in log–log). The dotted line represents a power
law �r2 and serves as a guide to the eye. (b) The case of
Moscow where the two regimes (r , rC and r . rC) with
their different exponents are visible (the dotted lines serve
here as a guide to the eye). (Online version in colour.)
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distance less than or equal to r, where the origin of dis-
tances is the barycentre of all stations considered as
points. Interestingly, the barycentre of all stations is
almost motionless, except in the case of NYC where
the barycentre moves from Manhattan to Queens, and
thus we will exclude NYC from further study. Chicago
is a similar case: the spatial structure of the core is
peculiar, mainly due to the presence of the lake which
constrains the network from expanding in the other
directions. We will also exclude this network in this sec-
tion. It should, however, be noted here that both
Chicago and NYC do follow the image of core and
branches but that the main difference with the other net-
works is that the core of these networks has no clear
spatial meaning due to the geographical constraints
(such as the presence of a lake for Chicago and a
particular shape of the land area for NYC).

For the year 2009, the limiting shape made of a core
and branches implies that there is an average distance
rC which determines the core. In practice, we can
measure on the network the size NC of the core and
we then define rC such that N(r ¼ rC) ¼ NC (which
assumes implicitly an isotropic core shape, which is
the case for most networks except for the excluded
cases of Chicago and NYC). For the various cities, we
can easily compute the function N ¼ N(r) from which
we can extract rC and we report the results in table 3.

Next, we can rescale r by rC and N(r) by NC and we
then obtain the results shown in figure 12.

This figure displays several interesting features.
First, the short distance regime r , rC is well described
by a behaviour of the form N(r) � rCpr2 consistent
with a uniform density rC of core stations. For very
large distances, for most networks we observe a satur-
ation of N(r). The interesting regime is then for
intermediate distances when r is larger than the core
size but smaller than the maximum branch size rmax.
This intermediate regime is characterized by different
behaviours with r. A similar result was obtained ear-
lier [14], where the authors observed for Paris that
N(r . rc) � r0.5, a result that was at that time difficult
to understand in the framework of fractal geometry.

Here we show that these regimes can be understood
in terms of the core and branches model, with the
J. R. Soc. Interface
additional factor that the spacing between consecutive
stations is increasing with r. Within this picture (and
assuming isotropy), N(r) is given by

N rð Þ �

rCpr2 for r , rC;

rCpr2
C þN B

Ð r
rC

dr
D rð Þ for rC , r , rmax;

N for r . rmax;

8>><
>>:

ð4:1Þ

where N is the total number of stations, NB is the number
of branches and D(r) is the average spacing between
stations on branches at distance r from the barycentre.

To test this shape, we can determine the various par-
ameters of equation (4.1)—namely NB, NC, rC and
D(r)—and plot the resulting shape of equation (4.1)
against the empirical data. It is easy to determine empiri-
cally the numbersNB, NC and rC, but the quantityD(r) is
extremely noisy due to the small number of points (all
these numbers are determined for the year 2009),
especially for large values of r closest to rmax, at a distance
where, often, there is no more than a handful of stations.

The less noisy situation is obtained in the case of
Moscow, which has long branches and for which we
obtain a roughly constant interstation spacing. In this

http://rsif.royalsocietypublishing.org/
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case, we obtain, for r . rC, a behaviour of the form
N(r) � NBr (figure 12b).

More generally, the large distance behaviour rC ,

r , rmax will be of the form

N rC , r , rmaxð Þ � r1�t ð4:2Þ

where t denotes the exponent governing the interspacing
decay D(r) � rt. For most networks, the regime rC ,

r , rmax is small and as already mentioned D(r) is very
noisy. Rough fits in different cases give a behaviour for
equation (4.1) consistent with the data (figure 13).

In particular, for Moscow which has long branches, we
observe a behaviour consistent with D(r) ≃ constant,
while for the other networks we observe an increasing
trend, but an accurate estimate of t is difficult to
obtain, given the small variation range of r — with no
more than one decade of available data. For example, a
fit over this decade of data gives t � 0.5 for Paris (with
r2 ¼ 0.74) in agreement with the result obtained in
[14]. Despite the difficulty of obtaining accurate quanti-
tative results, more data are needed to have a definite
answer and so far we can only claim that the data are
not inconsistent with the behaviour equation (4.1),
which supports our picture of a long-time limit network
shape made of a core and radial branches.
5. DISCUSSION

In summary, we have observed a number of similarities
between different subway systems for the world’s largest
cities, despite their geographical and historical differences.

First, we have shown that the largest subway net-
works exhibit a similar temporal decrease of most
fluctuations around their long-term stable values and
J. R. Soc. Interface
thus converge to a similar structure. We identified
and characterized the shape of this long-time limiting
graph as a structure made of a core and branches
which appears to be relatively independent of the
peculiar historical idiosyncracies associated with the
evolution of these particular cities.

For large networks, we generally observe a fraction of
branches of about 45 per cent for most networks, and a
ratio for the spatial extensions of branches to the core of
about 2. The number of branches scales roughly as the
square root of the number of stations. The core of these
different city networks has approximately the same
average degree which is increasing with the network
size, from �2 to �2.4 when N � 100, after which it
approximately remains within the interval [2.3, 2.5]
(with moderate fluctuations). The fraction of k ¼ 2
nodes in the core is generally larger than 60 per cent.

In addition, this picture of a core with branches and
an increasing spacing between consecutive stations on
these branches is confirmed by spatial measurements
such as the number of stations at a given distance r
and provides a natural interpretation to these measures.

The evolution of networks in general and urban net-
works in particular represents an exciting unexplored
problem that mixes spatial and topological properties
in unusual and often counterintuitive ways. They require
a specific set of indicators that describe these phenom-
ena. Other data such as population density, land use
activity distribution and traffic flows are likely to bring
relevant information to this problem and would
undoubtedly enrich our study. We believe, however,
that the present approach represents an important
exploratory step in our understanding and is crucial for
the modelling of the evolution of urban networks. In par-
ticular, the existence of unique long-time limit
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topological and spatial features is a universal signature
that fundamental mechanisms, independent of historical
and geographical differences, contribute to the evolution
of these transportation networks.

We thank the anonymous referees for very useful and
interesting comments.
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