3/06/2016
ENPC - Operations Research and Transport

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (3pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player.

	a	b	c
a	$(1,2)$	$(4,3)$	$(4,4)$
b	$(2,6)$	$(5,5)$	$(2,6)$
c	$(3,2)$	$(2,1)$	$(1,1)$

1. Find the Nash equilibrium(s)
2. Find the social optimum(s)
3. Find the Pareto optimum(s)

Solution. 1. (1pt) $N E:(a, c)$ and ($c, a)$
2. (1pt) $S O:(b, b)$
3. (1pt) Pareto : $(b, a),(b, b),(b, c)$.

Exercice $2(5 \mathrm{pts})$. Consider the following non-oriented weighted graph.

Figure 1: non-oriented graph

1. Why can Dijkstra's algorithm be used to find a shortest path on this graph (Figure 1)?
2. Use Dijkstra's algorithm to find the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm. Give the shortest path and its cost.
3. Can we find a topological order for this graph (Figure 1)? for the next one (Figure 2)?

Figure 2: oriented graph
4. Find the shortest a-f-path for the graph in Figure 2.

Solution. 1. (0.5pt) We can consider that each arc is two opposite directed arcs with positive costs. Hence, Djikstra algorithm applies.
2. We have (2 pt)

a	b	c	d	e	f
(0)	∞	∞	∞	∞	∞
0	(4)	(2)	∞	∞	∞
0	(3)	2	(10)	(12)	∞
0	3	2	(8)	(12)	∞
0	3	2	8	(10)	(14)
0	3	2	8	10	(13)
0	3	2	8	10	13

(0.5pt) Thus the shortest path is $a-c-b-d-e-f$ for a cost of 13 .
3. (1pt) No for Figure 1 graph is non-oriented. Yes for figure 2 : a-c-b-d-e-f.
4. (1pt) Graph 2 is a subset of graph 1 dedoubled, and the shortest path in graph 1 is admissible in graph 2, hence it is still the shortest path.

Exercice 3 (6pts). We consider the problem

$$
\min _{x \in[-1,1]^{2}} J(x):=\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2} .
$$

We want to solve this problem through Frank-Wolfe algorithm (a.k.a Convex Combination Method).

1. Will the Frank-Wolfe algorithm converge ?
2. Compute the gradient of J.
3. Assume that $x^{(0)}=(0,0)$. Write and solve the linear problem that is part of the first iteration of the Frank-Wolfe algorithm.
4. Write and solve the linear search problem that is part of the first iteration of the FrankWolfe algorithm. Find the new point $x^{(1)}$.
5. Write the linear problem part of the second iteration of the Frank-Wolfe algorithm.

Solution. 1. (0.5pt) Objective function is (strongly) convex, constraints are polyhedral.
2. $(1 p t) \nabla J(x)=\left(2\left(x_{1}-2\right), 2\left(x_{2}+1\right)\right)^{\top}$
3. (1pt) The linear problem is given by

$$
\min _{y \in[-1,1]^{2}}-4 y_{1}+2 y_{2}
$$

with optimal solution $(1,-1)$.
4. (1pt) The linear search problem is

$$
\min _{t \in[0,1]}(t-2)^{2}+(-t+1)^{2}
$$

(1pt) The unconstrained problem has an optimal solution of $t=3 / 2$, hence the optimal t is $t=1$, and we have $(0.5 p t s) x^{(1)}=(1,-1)$.
5. (1pt) The new linear problem is given by

$$
\min _{y \in[-1,1]^{2}}-2 y_{1}
$$

Exercice 4 (6pts). The price of anarchy of a class \mathcal{C} of cost functions is the highest price of anarchy obtained by choosing any (finite) graph, with any rate (i.e. input/output flow) and any cost function in the class.

We will assume that \mathcal{C} contains the constant functions. Moreover we assume that \mathcal{C} contains only non-decreasing functions.

1. What is the price of anarchy if \mathcal{C} is the class of non-decreasing affine functions?
2. What is the price of anarchy if \mathcal{C} is the class of non-decreasing polynomial functions?

A Pigou network is a network with two nodes: one origin o, one destination d, and two arcs linking o to d, and a flow rate between o and d of $r>0$. The cost function of the first arc is $c \in \mathcal{C}$, and the cost function of the second arc is constant equal to $c(r)$.
3. What is the user equilibrium, social optimum and price of anarchy of a Pigou network with given rate $r>0$? (The result is not a closed formula but contains a max or a min).
4. Deduce a lower bound of the price of anarchy of the class \mathcal{C}.
5. Show that this lower bound is exact for the class of affine non-decreasing functions.

Solution. 1. (0.5pt) By theorem it is lower than 4/3, and the bound is attained for the Braess Paradox.
2. (1pt) $+\infty$ using $r=1$ and $x^{p}, p \rightarrow \infty$.
3. - (1pt) By monotonicity of $c, c(x) \leq c(r)$ for $x \leq r$, hence an user equilibrium is given by $x_{1}=r, x_{2}=0$, with total cost $r c(r)$.

- (1pt) A social optimum is given by $\min _{0 \leq x \leq r} x c(x)+(r-x) c(r)$
- (0.5pt) The price of anarchy $\max _{0 \leq x \leq r} r c(r) /(x c(x)+(r-x) c(r))$.

4. (1pt) Thus the price of anarchy of \mathcal{C} is greater than the price of anarchy on a Pigou network, hence greater than

$$
\max _{c \in \mathcal{C}, r>0} \max _{0 \leq x \leq r} \frac{r c(r)}{x c(x)+(r-x) c(r)}
$$

5. (1pt) Choosing $r=1$ and $c(x)=x$ yield a lower bound of $4 / 3$ which is exact.

Exercice 5 (bonus). Give 3 optimization problems tackled by Air France-KLM Operations Research group.

