ENPC - Operations Research and Transport - 2017

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player. For example, if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains 1.

	a	b	с	d
a	(1,-1)	(0,0)	(0,1)	(-1,4)
b	(-1,2)	(2,3)	(3,2)	(-2,3)

1. Find the Nash equilibrium(s)

- 2. Find the social optimum(s)
- 3. Find the Pareto optimum(s)

Solution. 1. (0.75pt) NE : (b, b) and (a, d)

- 2. (0.5pt) SO : (b, b) and (b, c)
- 3. (0.75pt) Pareto : (b, b), (b, c), (a, d).

Exercice 2 (5pts). Consider the following weighted graph.

- 1. Use Dijkstra's algorithm to find the cost of the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm.
- 2. Find a topological ordering for the graph. Use the topological ordering to compute the cost of the shortest path from a to every nodes by Dynamic Programming.

3. Give the shortest path from a to f.

a	b	c	d	e	f
(0)	∞	∞	∞	∞	∞
0	(2)	(5)	∞	∞	∞
0	2	(5)	(3)	∞	∞
0	2	(4)	3	(7)	(8)
0	2	4	3	(6)	(8)
0	2	4	3	6	(7)
0	2	4	3	6	7

Solution. 1. We have (2 pt)

Hence the shortest path from a to f as cost 7.

2. (1pt) topological ordering : a-b-d-c-e-f. By dynamic programming we have: (1pt)

- (a) $\lambda(b) = 2$ (b) $\lambda(d) = 2 + 1 = 3$ (c) $\lambda(c) = \min\{3 + 2, 3 + 1\} = 4$ (d) $\lambda(e) = \min\{4 + 2, 3 + 4\} = 6$ (e) $\lambda(f) = \min\{6 + 1, 3 + 5\} = 7$
- 3. (1pt) Shortest path : a-b-d-c-e-f.

Exercice 3 (6pts). Consider a (finite) directed, strongly connected, graph G = (V, A). We consider K origin-destination vertex pair $\{o^k, d^k\}_{k \in [\![1,K]\!]}$, such that there exists at least one path from o^k to d^k . Let denote by

- 1. r^k the intensity of the flow of users entering in o^k and exiting in d^k ;
- 2. \mathcal{P}_k the set of all simple (i.e. without cycle) paths from o^k to d^k , and by $\mathcal{P} = \bigcup_{k=1}^K \mathcal{P}_k$;
- 3. f_p the number of users taking path $p \in \mathcal{P}$ per hour (intensity);
- 4. $f = \{f_p\}_{p \in \mathcal{P}}$ the vector of path intensity;
- 5. $x_a = \sum_{p \ni a} f_p$ the flux of user taking the arc $a \in A$;
- 6. $x = \{x_a\}_{a \in A}$ the vector of arc intensity;
- 7. $\ell_a : \mathbb{R} \to \mathbb{R}^+$ the cost incurred by a given user to take arc a, if the arc-intensity is x_a ;
- 8. $L_a(x_a) := \int_0^{x_a} \ell_a(u) du.$

We want to find bounds on the price of anarchy, assuming that, for each arc $a, \ell_a : \mathbb{R}^+ \to \mathbb{R}^+$ is non-decreasing, and that we have

$$x\ell_a(x) \le \gamma L_a(x), \qquad \forall x \in \mathbb{R}^+$$

1. Recall which optimization problems solves the social optimum x^{SO} and the user equilibrium x^{UE} . We will denote W(x) the objectif function of the user equilibrium problem and C(x) the objective function of the social optimum problem.

- 2. Let x be a feasable vector of arc-intensity. Show that $W(x) \leq C(x) \leq \gamma W(x)$.
- 3. Show that the price of anarchy $C(x^{UE})/C(x^{SO})$ is lower than γ .
- 4. If the cost per arc l_a are polynomial of order at most p with non-negative coefficient, find a bound on the price of anarchy. Is this bound sharp?
- **Solution.** 1. (0.5pts) The user equilibrium and social optimum problem are of the following form

$$\min_{\substack{x,f}} \quad J(x) \tag{1}$$

s.t.
$$r_k = \sum_{p \in \mathcal{P}_k} f_p$$
 $k \in \llbracket 1, K \rrbracket$ (2)

$$x_a = \sum_{p \ni a} f_p \qquad a \in A \tag{3}$$

$$f_p \ge 0 \qquad \qquad p \in \mathcal{P} \tag{4}$$

where $J(x) = W(x) = \sum_{a \in A} L_a(x_a)$ for the user equilibrium, and $J(x) = C(x) = \sum_{a \in A} x_a \ell_a(x_a)$ for the social optimum.

- 2. (2pts) As ℓ_a is non-decreasing and $x_a \ge 0$ we have $x_a\ell_a(x_a) \ge \int_0^{x_a} \ell_a(x_a) = L_a(x_a)$. Furthermore, by assumption we have $x\ell_a(x) \le \gamma L_a(x)$. Summing over $a \in A$ gives the result.
- 3. (2pts) We have

$$C(x^{UE}) \le \gamma W(x^{UE}) \le \gamma W(x^{SO}) \le \gamma C(x^{SO}).$$

4. (1.5pts) If ℓ_a is a polynomial function of order at most p with non-negative coefficient, then we have $x\ell_a(x) \leq (p+1)L_a(x)$. Hence, the price of anarchy is lower than p+1. For p = 1 we have affine function in which case the price of anarchy is at most 4/3 < 2, so the bound is not sharp.

Exercice 4 (7pts). Consider a set of tasks $T = \{T_i\}_{i \in [\![1,n]\!]}$. Each task t_i is a triplet $t_i = (\tau_i, l_i, r_i)$, where $\tau_i \in \mathbb{R}^+$ is the date at which the task should be started, $l_i \in \mathbb{R}^+$ is the length of task *i* and $r_i \in \mathbb{R}^+$ is the revenue obtained by doing task *i*. Assume that each task can be done by any single employee.

- 1. Construct a graph with nodes $T \cup \{o, d\}$, where o and d are artificial nodes such that any o d path is a feasible set of tasks for one employee.
- 2. Show that if you have only one employee, finding the set of tasks that maximizes your revenue is a shortest path problem (don't forget to specify the cost associated to each arc).
- 3. What shortest path algorithm would be adapted here ? Why ?
- 4. Write a Linear Programming problem with binary (with value in $\{0, 1\}$) variables that aims at maximizing revenue with $N \in \mathbb{N}$ employee (a task can be done only once).
- 5. Explain why this problem can be solved with the simplex algorithm.
- 6. Now assume that you want to treat all tasks with the minimum number of employees. Write this problem as a linear problem with binary and continuous variables.

Solution. 1. (1pts) For all pair of tasks (t_i, t_j) add an arc to the graph iff $\tau_i + l_i \leq \tau_j$.

- 2. (1pts) Attach to each arc (t_i, t_j) , and (t_i, d) the cost $-r_i \leq 0$. Finding the shortest path is finding the best set of task for one employee.
- 3. (1pts) The graph is acyclic, then Dynamic Programming can be applied. (Note : with negative cost Djikstra can not be applied directly).
- 4. (2pts) We denote by x_a the binary variable that has 1 for value if the arc a is selected.

$$\begin{split} \max_{\{x_a\}_{a \in A}} & \sum_{(i,j) \in A} x_{(i,j)} r_i \\ s.t. & \sum_{a \in \delta^-(i)} x_a = \sum_{a \in \delta^+(i)} x_a \qquad \forall i \in \llbracket 1, n \rrbracket \\ & \sum_{a \in \delta^+(i)} x_a \leq 1 \qquad \forall i \in \llbracket 1, n \rrbracket \\ & \sum_{a \in \delta^+(o)} x_a \leq N \\ & x_a \in \{0, 1\} \qquad \forall a \in A \end{split}$$

- 5. (1pts) The constraint matrix being a flow matrix is TU, hence the continuous relaxation has an optimal integer solution found by the simplex algorithm.
- 6. (1pts) We have

$$\begin{split} \min_{t,\{x_a\}_{a\in A}} & t \\ s.t. & \sum_{a\in\delta^-(i)} x_a = \sum_{a\in\delta^+(i)} x_a & \forall i\in \llbracket 1,n \rrbracket \\ & \sum_{a\in\delta^+(i)} x_a = 1 & \forall i\in \llbracket 1,n \rrbracket \\ & \sum_{a\in\delta^+(o)} x_a \leq t \\ & x_a\in\{0,1\} & \forall a\in A \end{split}$$

Exercice 5 (bonus). Give three ideas that allow to speed-up the shortest path algorithm in Google Maps.