ENPC - Operations Research and Transport - 2017

You have 2 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player. For example, if player 1 play a, and player 2 play c, then player 1 gains 0 and player 2 gains 1.

	a	b	c	d
a	$(1,-1)$	$(0,0)$	$(0,1)$	$(-1,4)$
b	$(-1,2)$	$(2,3)$	$(3,2)$	$(-2,3)$

1. Find the Nash equilibrium(s)
2. Find the social optimum(s)
3. Find the Pareto optimum(s)

Solution. 1. (0.75pt) NE: (b, b) and (a, d)
2. ($0.5 p t) S O:(b, b)$ and (b, c)
3. (0.75pt) Pareto : $(b, b),(b, c),(a, d)$.

Exercice 2 (5pts). Consider the following weighted graph.

1. Use Dijkstra's algorithm to find the cost of the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm.
2. Find a topological ordering for the graph. Use the topological ordering to compute the cost of the shortest path from a to every nodes by Dynamic Programming.
3. Give the shortest path from a to f.

Solution. 1. We have (2 pt)

a	b	c	d	e	f
(0)	∞	∞	∞	∞	∞
0	(2)	(5)	∞	∞	∞
0	2	(5)	(3)	∞	∞
0	2	(4)	3	(7)	(8)
0	2	4	3	(6)	(8)
0	2	4	3	6	(7)
0	2	4	3	6	7

Hence the shortest path from a to f as cost 7 .
2. (1pt) topological ordering : a-b-d-c-e-f. By dynamic programming we have: (1pt)
(a) $\lambda(b)=2$
(b) $\lambda(d)=2+1=3$
(c) $\lambda(c)=\min \{3+2,3+1\}=4$
(d) $\lambda(e)=\min \{4+2,3+4\}=6$
(e) $\lambda(f)=\min \{6+1,3+5\}=7$
3. (1pt) Shortest path: a-b-d-c-e-f.

Exercice 3 (6pts). Consider a (finite) directed, strongly connected, graph $G=(V, A)$. We consider K origin-destination vertex pair $\left\{o^{k}, d^{k}\right\}_{k \in \llbracket 1, K \rrbracket}$, such that there exists at least one path from o^{k} to d^{k}. Let denote by

1. r^{k} the intensity of the flow of users entering in o^{k} and exiting in d^{k};
2. \mathcal{P}_{k} the set of all simple (i.e. without cycle) paths from o^{k} to d^{k}, and by $\mathcal{P}=\bigcup_{k=1}^{K} \mathcal{P}_{k}$;
3. f_{p} the number of users taking path $p \in \mathcal{P}$ per hour (intensity);
4. $f=\left\{f_{p}\right\}_{p \in \mathcal{P}}$ the vector of path intensity;
5. $x_{a}=\sum_{p \ni a} f_{p}$ the flux of user taking the arc $a \in A$;
6. $x=\left\{x_{a}\right\}_{a \in A}$ the vector of arc intensity;
7. $\ell_{a}: \mathbb{R} \rightarrow \mathbb{R}^{+}$the cost incurred by a given user to take arc a, if the arc-intensity is x_{a};
8. $L_{a}\left(x_{a}\right):=\int_{0}^{x_{a}} \ell_{a}(u) d u$.

We want to find bounds on the price of anarchy, assuming that, for each arc $a, \ell_{a}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ is non-decreasing, and that we have

$$
x \ell_{a}(x) \leq \gamma L_{a}(x), \quad \forall x \in \mathbb{R}^{+}
$$

1. Recall which optimization problems solves the social optimum $x^{S O}$ and the user equilibrium $x^{U E}$. We will denote $W(x)$ the objectif function of the user equilibrium problem and $C(x)$ the objective function of the social optimum problem.
2. Let x be a feasable vector of arc-intensity. Show that $W(x) \leq C(x) \leq \gamma W(x)$.
3. Show that the price of anarchy $C\left(x^{U E}\right) / C\left(x^{S O}\right)$ is lower than γ.
4. If the cost per arc ℓ_{a} are polynomial of order at most p with non-negative coefficient, find a bound on the price of anarchy. Is this bound sharp?

Solution. 1. (0.5pts) The user equilibrium and social optimum problem are of the following form

$$
\begin{array}{llr}
\min _{x, f} & J(x) & \\
\text { s.t. } & r_{k}=\sum_{p \in \mathcal{P}_{k}} f_{p} & k \in \llbracket 1, K \rrbracket \\
& x_{a}=\sum_{p \ni a} f_{p} & a \in A \\
& f_{p} \geq 0 & p \in \mathcal{P} \tag{4}
\end{array}
$$

where $J(x)=W(x)=\sum_{a \in A} L_{a}\left(x_{a}\right)$ for the user equilibrium, and $J(x)=C(x)=$ $\sum_{a \in A} x_{a} \ell_{a}\left(x_{a}\right)$ for the social optimum.
2. (2pts) As ℓ_{a} is non-decreasing and $x_{a} \geq 0$ we have $x_{a} \ell_{a}\left(x_{a}\right) \geq \int_{0}^{x_{a}} \ell_{a}\left(x_{a}\right)=L_{a}\left(x_{a}\right)$. Furthermore, by assumption we have $x \ell_{a}(x) \leq \gamma L_{a}(x)$. Summing over $a \in A$ gives the result.
3. (2pts) We have

$$
C\left(x^{U E}\right) \leq \gamma W\left(x^{U E}\right) \leq \gamma W\left(x^{S O}\right) \leq \gamma C\left(x^{S O}\right) .
$$

4. (1.5pts) If ℓ_{a} is a polynomial function of order at most p with non-negative coefficient, then we have $x \ell_{a}(x) \leq(p+1) L_{a}(x)$. Hence, the price of anarchy is lower than $p+1$. For $p=1$ we have affine function in which case the price of anarchy is at most $4 / 3<2$, so the bound is not sharp.

Exercice 4 (7pts). Consider a set of tasks $T=\left\{T_{i}\right\}_{i \in \llbracket 1, n \rrbracket}$. Each task t_{i} is a triplet $t_{i}=$ $\left(\tau_{i}, l_{i}, r_{i}\right)$, where $\tau_{i} \in \mathbb{R}^{+}$is the date at which the task should be started, $l_{i} \in \mathbb{R}^{+}$is the length of task i and $r_{i} \in \mathbb{R}^{+}$is the revenue obtained by doing task i. Assume that each task can be done by any single employee.

1. Construct a graph with nodes $T \cup\{o, d\}$, where o and d are artificial nodes such that any $o-d$ path is a feasible set of tasks for one employee.
2. Show that if you have only one employee, finding the set of tasks that maximizes your revenue is a shortest path problem (don't forget to specify the cost associated to each arc).
3. What shortest path algorithm would be adapted here? Why?
4. Write a Linear Programming problem with binary (with value in $\{0,1\}$) variables that aims at maximizing revenue with $N \in \mathbb{N}$ employee (a task can be done only once).
5. Explain why this problem can be solved with the simplex algorithm.
6. Now assume that you want to treat all tasks with the minimum number of employees. Write this problem as a linear problem with binary and continuous variables.

Solution. 1. (1pts) For all pair of tasks $\left(t_{i}, t_{j}\right)$ add an arc to the graph iff $\tau_{i}+l_{i} \leq \tau_{j}$.
2. (1pts) Attach to each arc $\left(t_{i}, t_{j}\right)$, and $\left(t_{i}, d\right)$ the cost $-r_{i} \leq 0$. Finding the shortest path is finding the best set of task for one employee.
3. (1pts) The graph is acyclic, then Dynamic Programming can be applied. (Note : with negative cost Djikstra can not be applied directly).
4. (2pts) We denote by x_{a} the binary variable that has 1 for value if the arc a is selected.

$$
\begin{array}{rlr}
\max _{\left\{x_{a}\right\}_{a \in A}} & \sum_{(i, j) \in A} x_{(i, j)} r_{i} & \\
\text { s.t. } & \sum_{a \in \delta^{-}(i)} x_{a}=\sum_{a \in \delta^{+}(i)} x_{a} & \forall i \in \llbracket 1, n \rrbracket \\
& \sum_{a \in \delta^{+}(i)} x_{a} \leq 1 & \forall i \in \llbracket 1, n \rrbracket \\
& \sum_{a \in \delta^{+}(o)} x_{a} \leq N & \\
& x_{a} \in\{0,1\} & \forall a \in A
\end{array}
$$

5. (1pts) The constraint matrix being a flow matrix is TU, hence the continuous relaxation has an optimal integer solution found by the simplex algorithm.
6. (1pts) We have

$$
\begin{array}{rlr}
\min _{t,\left\{x_{a}\right\}_{a \in A}} & t & \\
\text { s.t. } & \sum_{a \in \delta^{-}(i)} x_{a}=\sum_{a \in \delta^{+}(i)} x_{a} & \forall i \in \llbracket 1, n \rrbracket \\
& \sum_{a \in \delta^{+}(i)} x_{a}=1 & \forall i \in \llbracket 1, n \rrbracket \\
& \sum_{a \in \delta^{+}(o)} x_{a} \leq t & \\
& x_{a} \in\{0,1\} & \forall a \in A
\end{array}
$$

Exercice 5 (bonus). Give three ideas that allow to speed-up the shortest path algorithm in Google Maps.

