ENPC - Operations Research and Transport - 2018

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards being given in the order of player. For example, if player 1 play a, and player 2 play c, then player 1 gains 2 and player 2 gains 3.

	a	b	c
a	$(7,1)$	$(0,0)$	$(2,3)$
b	$(-1,2)$	$(2,3)$	$(3,2)$
c	$(-1,4)$	$(1,3)$	$(1,7)$

1. Find the Nash equilibrium(s)
2. Find the social optimum(s)
3. Find the Pareto optimum(s)

Exercice 2 (5pts). Consider the following weighted graph.

1. Use Dijkstra's algorithm to find the cost of the shortest path between node a and node f. The results can be presented in a table of the labels where each column corresponds to a node of the graph, and each line to an iteration of the Dijkstra algorithm. Note the order in which the nodes are treated.
2. We have the following heuristic h giving an estimate of the distance between a given node and f.

a	b	c	d	e	f
20	4	7	6	0	0

Apply the A^{*} algorithm using this heuristic. Note the order of nodes treated. Comment.

Exercice 3 (8 pts). Consider a (finite) directed, strongly connected, graph $G=(V, E)$. We consider K origin-destination vertex pair $\left\{o^{k}, d^{k}\right\}_{k \in \llbracket 1, K \rrbracket}$. We denote by (G, ℓ, r) the congestion game where

- r^{k} is the intensity of the flow of users entering in o^{k} and exiting in d^{k};
- \mathcal{P}_{k} is the set of all simple (i.e. without cycle) paths from o^{k} to d^{k}, and by $\mathcal{P}=\bigcup_{k=1}^{K} \mathcal{P}_{k}$;
- f_{p} the number of users taking path $p \in \mathcal{P}$ per hour (intensity);
- $f=\left\{f_{p}\right\}_{p \in \mathcal{P}}$ the vector of path intensity;
- $x_{e}=\sum_{p \ni e} f_{p}$ the flux of user taking the arc $e \in E$;
- $x=\left\{x_{e}\right\}_{e \in E}$ the vector of arc intensity;
- $x(f)$ is the vector of edge-intensity induced by the path intensity f;
- $\ell_{e}: \mathbb{R} \rightarrow \mathbb{R}^{+}$the cost incurred by a given user to take edge e, if the edge-intensity is x_{e};
- $L_{e}\left(x_{e}\right):=\int_{0}^{x_{e}} \ell_{e}(u) d u$.

We want to compare the cost of the user equilibrium of (G, ℓ, r), denoted $f^{U E, r}$, with the cost of the social optimum $f^{S O, 2 r}$ of $(G, \ell, 2 r)$, that is the same game with twice the inflows. Accordingly we denote $x^{U E, r}=x\left(f^{U E, r}\right)$, and $x^{S O, 2 r}=x\left(f^{S O, 2 r}\right)$. Finally, edge-loss ℓ_{e} are assumed to be non-negative and non-decreasing.

We construct new loss functions $\bar{\ell}_{e}(x)$ given by

$$
\bar{\ell}_{e}(x)= \begin{cases}\ell_{e}\left(x^{U E, r}\right) & \text { if } x \leq x^{U E, r} \\ \ell_{e}(x) & \text { else }\end{cases}
$$

Accordingly we denote $\bar{\ell}_{p}(f)=\sum_{e \in p} \bar{\ell}_{e}\left(x_{e}(f)\right)$ and

$$
C(x)=\sum_{e \in E} x_{e} \ell_{e}\left(x_{e}\right) \quad \text { and } \quad \bar{C}(x)=\sum_{e \in E} x_{e} \bar{\ell}_{e}\left(x_{e}\right)
$$

1. Justify that for all $k \in \llbracket 1, K \rrbracket$, there exists $c_{k} \in \mathbb{R}_{+}$such that for all path $p \in \mathcal{P}_{k}$,

$$
f_{p}^{U E, r}>0 \Rightarrow \ell_{p}\left(f^{U E, r}\right)=c_{k}
$$

2. Show that, for any $x \in \mathbb{R}_{+}^{|E|}, C(x) \leq \bar{C}(x)$, and that $C\left(x^{U E, r}\right)=\bar{C}\left(x^{U E, r}\right)$.
3. Show that, for any $x \in \mathbb{R}_{+}^{|E|}, x_{e}\left(\bar{\ell}_{e}\left(x_{e}\right)-\ell_{e}\left(x_{e}\right)\right) \leq x_{e}^{U E, r} \ell_{e}\left(x_{e}^{U E, r}\right)$.
4. Deduce that, $\bar{C}\left(x^{S O, 2 r}\right)-C\left(x^{S O, 2 r}\right) \leq C\left(x^{U E, r}\right)$.
5. On the other hand, show that, for every path $p \in \mathcal{P}_{k}, \bar{\ell}_{p}\left(f^{S O, 2 r}\right) \geq c_{k}$.
6. Write C and \bar{C} as function of f instead of x (we keep the same notation).
7. Deduce that, $\bar{C}\left(f^{S O, 2 r}\right) \geq 2 C\left(f^{U E, r}\right)$.
8. Finally, show that, $C\left(f^{U E, r}\right) \leq C\left(f^{S O, 2 r}\right)$. Give an interpretation of this result.

Exercice 4 (7pts). Consider the function $f\left(x_{1}, x_{2}\right)=4 x_{1}^{4}-2 x_{1}+x_{2}^{2}-x_{2}+2$, and the set

$$
X=\left\{x \in \mathbb{R}_{+}^{2} \quad \mid \quad 2 x_{2}+x_{1} \leq 2\right\}
$$

and $x^{0}=(0,0)$. A scheme of X representing the iteration and search direction of the algorithm might be helpful.

1. Justify that X is polyhedral and find its extreme points.
2. Compute ∇f
3. Justify that this problem can be solved by Frank-Wolfe (aka conditional gradient) algorithm.
4. Find the descent direction d^{0} of the Frank-Wolfe algorithm starting from x_{0}. (hint : use the extreme points of X).
5. Find the optimal step t^{0} of the first step of Frank-Wolfe algorithm. What is the new point x^{1} ?
6. What is the upper and lower bound obtained along this first iteration?
7. Find the descent direction d^{1} of the second step of Frank-Wolfe algorithm.
8. Write the unidimensional optimisation problem that would determine the next optimal step t^{1} (do not solve it).
9. Compute the lower bound associated to the second step of the algorithm.

Exercice 5 (Bonus). According to Yuso, why is the package transport problem more complicated than the taxi problem? Why are Yuso solving shortest path problem for?

