
ENPC - Operations Research and Transport - 2018

You have 2.5 hours for the exam. Exercises are independent. Computer, phones, tablets and
every connected objects are forbidden. Every note is allowed.

Exercice 1 (2pts). Consider a game where rewards (to be maximized) are given by the following
table where actions of player 1 correspond to the lines, actions of player 2 to the columns, rewards
being given in the order of player. For example, if player 1 play a, and player 2 play c, then
player 1 gains 2 and player 2 gains 3.

a b c

a (7,1) (0,0) (2,3)
b (-1,2) (2,3) (3,2)
c (-1,4) (1,3) (1,7)

1. Find the Nash equilibrium(s)

2. Find the social optimum(s)

3. Find the Pareto optimum(s)

Solution. 1. (0.5pt) NE : (b, b)

2. (0.5pt) SO : (a, a), (c, c)

3. (1.25 pt) Pareto : (a, a), (a, c), (b, b), (b, c) (c, c),

Exercice 2 (5pts). Consider the following weighted graph.
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1. Use Dijkstra’s algorithm to find the cost of the shortest path between node a and node f .
The results can be presented in a table of the labels where each column corresponds to a
node of the graph, and each line to an iteration of the Dijkstra algorithm. Note the order
in which the nodes are treated.
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a b c d e f

20 4 7 6 0 0

2. We have the following heuristic h giving an estimate of the distance between a given node
and f .

Apply the A∗ algorithm using this heuristic. Note the order of nodes treated. Comment.

Solution. 1. We have (2 pt)

a b c d e f

(0) ∞ ∞ ∞ ∞ ∞
0 (2) (5) ∞ ∞ ∞
0 2 (5) (3) (6) ∞
0 2 (5) 3 (6) (13)
0 2 5 3 (6) (13)
0 2 5 3 6 (7)
0 2 5 3 6 7

Hence the shortest path from a to f as cost 7. The nodes are treated in the following order:
a-b-d-c-e-f .

2. (3pt)

We compute the label λ in the following table

a b c d e f

(20) ∞ ∞ ∞ ∞ ∞
20 (6) (12) ∞ ∞ ∞
20 6 (12) (9) (6) ∞
20 6 (12) (9) 6 (7)
20 6 (12) (9) 6 7

Which gives the distance and shortest path in only 4 iterations (a-b-e-f) instead of 6.

Exercice 3 (8pts). Consider a (finite) directed, strongly connected, graph G = (V,E). We
consider K origin-destination vertex pair

{
ok, dk

}
k∈J1,KK. We denote by (G, `, r) the congestion

game where

• rk is the intensity of the flow of users entering in ok and exiting in dk;

• Pk is the set of all simple (i.e. without cycle) paths from ok to dk, and by P =
⋃K

k=1 Pk ;

• fp the number of users taking path p ∈ P per hour (intensity);

• f =
{
fp
}
p∈P the vector of path intensity;

• xe =
∑
p3e

fp the flux of user taking the arc e ∈ E;

• x =
{
xe
}
e∈E the vector of arc intensity;

• x(f) is the vector of edge-intensity induced by the path intensity f ;

• `e : R→ R+ the cost incurred by a given user to take edge e, if the edge-intensity is xe;



• Le(xe) :=
∫ xe

0 `e(u)du.

We want to compare the cost of the user equilibrium of (G, `, r), denoted fUE,r, with the cost of
the social optimum fSO,2r of (G, `, 2r), that is the same game with twice the inflows. Accordingly
we denote xUE,r = x(fUE,r), and xSO,2r = x(fSO,2r). Finally, edge-loss `e are assumed to be
non-negative and non-decreasing.

We construct new loss functions ¯̀
e(x) given by

¯̀
e(x) =

{
`e(x

UE,r) if x ≤ xUE,r

`e(x) else

Accordingly we denote ¯̀
p(f) =

∑
e∈p

¯̀
e(xe(f)) and

C(x) =
∑
e∈E

xe`e(xe) and C̄(x) =
∑
e∈E

xe ¯̀
e(xe).

1. Justify that for all k ∈ J1,KK, there exists ck ∈ R+ such that for all path p ∈ Pk,

fUE,r
p > 0 ⇒ `p(f

UE,r) = ck.

2. Show that, for any x ∈ R|E|+ , C(x) ≤ C̄(x), and that C(xUE,r) = C̄(xUE,r).

3. Show that, for any x ∈ R|E|+ , xe(¯̀
e(xe)− `e(xe)) ≤ xUE,r

e `e(x
UE,r
e ).

4. Deduce that, C̄(xSO,2r)− C(xSO,2r) ≤ C(xUE,r).

5. On the other hand, show that, for every path p ∈ Pk, ¯̀
p(f

SO,2r) ≥ ck.

6. Write C and C̄ as function of f instead of x (we keep the same notation).

7. Deduce that, C̄(fSO,2r) ≥ 2C(fUE,r).

8. Finally, show that, C(fUE,r) ≤ C(fSO,2r). Give an interpretation of this result.

Solution. 1. (0.5pts) fUE,r is a Wardrop equilibrium, thus by definition the cost of all used
path is the same.

2. (0.5pts) As `e are non decreasing, ¯̀
e ≥ `e, multiplying by xe ≥ 0 and summing gives the

result. Equality is obvious.

3. (1pts) ¯̀
e(xe) − `e(xe) is null if xe ≥ xUE,r

e , and equal to `e(x
UE,r
e ) − `e(xe) ≤ `e(x

UE,r
e )

otherwise. Multiplying by xe we have the result both for xe ≥ xUE,r
e and for xe ≤ xUE,r

e .

4. (1pts)

C̄(xSO,2r)− C(xSO,2r) =
∑
e∈E

xSO,2r
e (¯̀

e(x
SO,2r
e )− `e(xSO,2r

e ))

≤
∑
e∈E

xUE,r
e `e(x

UE,r
e )

= C(xUE,r)



5. (1.5pts) Consider p ∈ Pk. Then `p(f
UE,r) = ck. Furthermore,

¯̀
p(f

SO,2r) =
∑
e∈E

¯̀
e(xe(f

SO,2r)) ≥
∑
e∈E

`e(x
UE,r
e ) = ck

where the inequality comes from monotonicity of `e, and definition of ¯̀
e.

6. (0.5pts)

C(x) =
∑
f∈P

fp`p(f) and C̄(x) =
∑
f∈P

fp ¯̀
p(f).

7. (2pts)

C̄(fSO,2r) =

K∑
k=1

∑
p∈Pk

fSO,2r
p

¯̀
p(f

SO,2r)

≥
K∑
k=1

ck
∑
p∈Pk

fSO,2r
p

=
K∑
k=1

2ckr
k

= 2C(fUE,r)

8. (1pts) Combining previous results we have

2C(fUE,r) ≤ C̄(xSO,2r) ≤ C(xUE,r) + C(xSO,2r),

which give the result, that can be interpreted as ”optimizing flux cannot allow more than
twice the inflows rates without increasing global cost”.

Exercice 4 (7pts). Consider the function f(x1, x2) = 4x41 − 2x1 + x22 − x2 + 2, and the set

X =
{
x ∈ R2

+ | 2x2 + x1 ≤ 2
}

and x0 = (0, 0). A scheme of X representing the iteration and search direction of the algorithm
might be helpful.

1. Justify that X is polyhedral and find its extreme points.

2. Compute ∇f

3. Justify that this problem can be solved by Frank-Wolfe (aka conditional gradient) algorithm.

4. Find the descent direction d0 of the Frank-Wolfe algorithm starting from x0.
(hint : use the extreme points of X).

5. Find the optimal step t0 of the first step of Frank-Wolfe algorithm. What is the new point
x1 ?

6. What is the upper and lower bound obtained along this first iteration ?

7. Find the descent direction d1 of the second step of Frank-Wolfe algorithm.



8. Write the unidimensional optimisation problem that would determine the next optimal step
t1 (do not solve it).

9. Compute the lower bound associated to the second step of the algorithm.

Solution. 1. (0.5pts) (0, 0), (0, 1) and (2, 0)

2. (0.5pts) ∇(f) =

(
16x31 − 2
2x2 − 1

)

3. (0.5pts) ∇2f(x) =

(
42x21 0

0 2

)
� 0 hence f is convex, and X is polyhedral and bounded.

4. (1pts) miny∈X −2y1 − 1y2. −2 ∗ 0 − 1 ∗ 1 > −2 ∗ 2 − 1 ∗ 0, hence the optimal solution is
y0 = (2, 0). And the optimal direction is d0 = y0 − x0 = (2, 0).

5. (1pts) mint∈[0,1] 2
6t4−22t. By derivating this objective function we obtain that the optimal

step is t0 = 1/4, and x1 = x0 + t0d0 = (1/2, 0).

6. (1pts) The upper bound is f(x1) = 5/4. The lower bound is (∇(f)(x0))T (y0−x0)+f(x0) =
−2.

7. (1pts) To find the direction d1 we need to solve miny∈X ∇(f)(x1)T y. The solution being
an extreme point of X that is neither (0, 0) nor (2, 0), we have y1 = (1, 0). Thus d1 =
(1,−1/2).

8. (0.5pts) Finding the optimal step require to solve

min
t∈[0,1]

4(1/2− t)4 − 2(1/2− t) + t2 − t

9. (1pts) The lower bound is given by

(∇(f)(x1))T (y1 − x1) + f(x1) = 0 ∗ (−1/2)− 1 ∗ 1 + 5/4 = 1/4

Exercice 5 (Bonus). According to Yuso, why is the package transport problem more complicated
than the taxi problem ? Why are Yuso solving shortest path problem for ?


