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Chapter 2

Problems, complexity, and
algorithms

Addressing a question with the tools of Operations Research requires to
model is as a problem, and to design algorithms that solve this problem.
We have seen in the introduction that the time needed for the execution of
an algorithm determines its usability on practical applications. Complexity
theory gives tools to evaluate how difficult a problem is and if it can be
solved by fast algorithm. Decision problems play a key role in complexity
theory. Informally, a decision problem is defined by a certain type of input ,
as well as a question answerable by yes or no on this input.

Example 2.1. The following decision problem is considered in the theory of
linear programming that is exposed in Chapter 9.

Linear programming inequalities
Input. A matrix A in Zm×n, a vertex b in Zn.
Question. Is there an x ≥ 0 in Qn satisfying Ax = b

4

Example 2.2. Consider a firm that wants to open k ∈ Z+ factories. It has
the choice between m possible sites, and a set of n clients. Let aij indicate
the cost of delivering client j from factory i. A site selection S is a subset
of [m] of at most k elements that indicates the site that are opened, where
[m] denotes {1, . . . ,m}. The cost of a site selection is

c(S) =

n∑
j=1

min
i∈S

aij .

9
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Facility location (decision version)
Input. Three integers m, n, and k, a distance matrix A = (aij) ∈
Rm×n+ , a cost c0 ∈ R+.
Question. Is there a subset S ⊆ [m] such that |S| ≤ k and with cost
c(S) ≤ c0?

A given realization of an input of a problem is called an instance of the
problem. For example, 17 is an instance of the parity problem, for which
the answer is no. And

m = 4, n = 5, k = 2, A =


2 5 4 9 15
7 3 11 6 12
12 15 1 3 3
7 5 4 5 5

 , c0 = 15 (2.1)

is an instance of facility location for which it is easy to check that the
answer is yes. Indeed S = {1, 3} gives an adequate site selection. 4

Computer scientists have struggled without success during decades to
find “good” algorithms to compute the solution of some important problems.
For instance, no “good” algorithm could be found for the facility location
problem, or for the traveling salesman problem which we informally
state below.

Given a set of n clients to be visited by a salesman, find the order
in which the salesman should visit the client that minimizes the
total distance the salesman will travel.

Complexity theory emerged from the acknowledgment that some problem
are intrinsically difficult and it may not be possible to find “good” algorithm.
This requires to formalize the notions of “problem” and “solution algorithm”.
The foundations of complexity theory are quite technical and out of the scope
of this lecture. Hence, we are not completely formal in the introduction of
some notions, and provide the rigorous definitions for the interested reader
in extra-curricular sections.

2.1 Algorithm and decision problems

2.1.1 Algorithm

Tasks can be operated on computers using algorithms. We now give an in-
formal idea of what an algorithm is which suffices to understand this lecture.
A formal definition is given in the extra-curricular Section 2.1.3.

The tasks operated by a computer can be decomposed into elementary
operations such as reading or writing a bit (binary digit) in the memory,
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or performing arithmetic operations. An instruction is an unambiguous de-
scription of what a computer the elementary operations a computer should
execute given its current state and memory. An algorithm φ is a collection of
instructions indicating unambiguously what the computer should do given
all the possible states and content of the memory. A step of an algorithm is
the realization of an instruction. Given an input which specifies the initial
state of a computer, an execution of an algorithm is the sequence of state
and operations operated by the computer if it follows the instructions of the
algorithm. As an instruction may modify the state and the memory of a
computer, or stop the algorithm and return the result, the number of steps
in the sequence depends on the instructions realized and hence on the input.
The sequence can be of infinite length if no instruction terminating the al-
gorithm is met. The time complexity time(φ, x) ∈ Z+ of an algorithm φ on
an input x is the number of steps in the sequence. An algorithm converges
after a finite number of iterations on x if time(φ, x) < +∞.

Characterizing the input and the output of an algorithm φ requires to be
slightly more formal. An alphabet A is a finite set of at least two elements.
Practically, a computer works on the binary digits alphabet {0, 1}. A string
over A is a finite sequence of elements of A. A string is possibly empty. The
length size(x) of a string x is the number of elements in the sequence. We
denote by A∗ the set of strings over A. A language over A is a subset of A∗.
An element of a language is called a word .

Let S and T be two languages on an alphabet A. An algorithm φ from S
to T takes in input a word of S and returns a word of T . Given an input x
in S, if time(φ, x) < +∞, then φ returns an output denoted by output(φ, x).
The quantity output(φ, x) is not defined if time(φ, x) = +∞. An algorithm
φ is a polynomial time algorithm if there exists a polynomial P such that
time(φ, x) = O(P (size(x))) for any x in S.

Let A be an alphabet, S and T be two languages on an alphabet A, and
f : S → T a map. Then algorithm φ computes f if time(φ, x) < +∞ for
any x and output(φ, x) = f(x) for any x in S. A function f is computable in
polynomial time if there exists polynomial time algorithm that computes it.

2.1.2 Decision problems

Without loss of generality, we now assume that we are on the alphabet
A = {0, 1}

Definition 2.1. (Simplified) A decision problem P is a pair (X,Y ), where
X is a language, and Y ⊆ X. Language X is the input, and its elements are
the instances. Elements of Y are the instances for which the answer is yes,
and X\Y those for which the answer is no.

To make this definition coincide with the informal definition given at the
beginning of the chapter, we must choose a language L that is in bijection



12 CHAPTER 2. PROBLEMS, COMPLEXITY, AND ALGORITHMS

with the input set, and such that the size of the encoding is minimal. This
definition is simplified because X must satisfy an additional condition, which
is satisfied by all the problems we will consider in this lecture. This condition
is given in Section 2.1.3.

A solution algorithm for a decision problem (X,Y ) is an algorithm com-
puting the function f : X → {yes, no} that associates yes to instances in Y
and no to instances in X\Y .

Practically, we will use the informal definition given at the beginning of
the chapter. We just have to remember that the size needed to encode an
integer is d1 + loge.

2.1.3 Formal definitions: Turing Machine

We now introduce the notion of Turing machine, which is a formal definition
of an algorithm. Although it seems to be a restricted definition of an algo-
rithm, it is quite powerful and suffices to the analysis of most algorithms,
and many alternative “machines” that looks richer have been proved to be
equivalent. It is therefore the most widely used mathematical model of an al-
gorithm on a computer. Some more general machines such as random-access
stored-program machine are also used by specialists of complexity theory.

Informally, a Turing machine is a composed of tape, that can be seen as
a sequence of cells. Each cell contains a symbol of a given alphabet, or the
blank symbol ␣ that separates words. The tape is indefinitely extensible. A
head can read and write cells of the tape, and move along the tape. A state
register stores the state of the machine. The machine can only take a finite
number of states. At a given step, the machine reads the content of the
tape at the level of the head, and executes a fixed sequence of instructions
that depend only on the content of the cell and of the current state of the
machine. These instructions are of three types: erase or write a symbol, move
the head by a given number of cells, or change of state. These instructions are
contained in the table of instructions. The machine starts in an initial state.
The initial content of the tape is the input of the algorithm, completed by
blank symbols ␣. While the Machine is not in a final state, the machine reads
the content of the current cell and executes the corresponding instructions
in the table of instructions.

A Turing machine φ is therefore a 7-tuple (Q,A, b,Σ, δ, qinit, F ), where
Q is the non-empty and finite set of states, A is the alphabet which does not
contain the blank symbol ␣, b is the blank symbol ␣, Σ ⊆ A\{b} is the set of
input symbols that can be initially on the tape, qinit ∈ Q is the initial state,
F ⊆ Q is the set of final states, and

δ : Q×A→ Q×A× {−1, 0, 1}

is the table of instructions.



2.1. ALGORITHM AND DECISION PROBLEMS 13

Let A = A ∪ {␣}. The computation of φ on input x in Σsize(x) is the
finite or infinite sequence (qi, si, πi)i in Q×A

∗ × Z, where qi, si, and πi are
respectively the state, the content of the tape, and the position of the head
at step i, defined recursively as follows.
- q0 = qinit, s0(j) = x(j) if 0 ≤ j < size(x), and s0(j) = ␣ otherwise, and
π0 = 0.

- If qi is in F , then this is the end of the sequence, and we define time(φ, x) =
i. Furthermore, let k = min{j : si(j) = ␣}, and output(φ, x) be the string
t in Ak defined by t(j) = s(j) for 0 ≤ j < k.

- Otherwise, with (q′, a,m) = δ(qi, si(πi)), we have qi+1 = q′, si+1(πi) = a,
and πi+1 = πi +m.

If the sequence is infinite, we set time(φ, x) = +∞, and output(φ, x) is unde-
fined. We say that φ converges after a finite number of steps on a language
S on A if time(φ, x) <∞ for any input x in S.

A:gives example of the successive states

Exercise 2.1. What does the algorithm described by the following Turing
Machine ? A:todo 4

Turing machines are algorithms that enable to compute functions. Let
A be an alphabet, S and T be two languages on A, and f : S → T a map.
Then φ computes f if φ converges after a finite number of steps on S and
output(φ, x) = f(x) for any x in S. A Turing machine φ is a polynomial
time Turing machine if there exists a polynomial P such that time(φ, x) =
O(P (size(x))) for any x in S. A function f is computable if there exists a
Turing machine that computes it, and computable in polynomial time if there
exists polynomial time Turing machine that computes it.

Turing machine can notably be used to check if an element belongs to a
language. A Turing machine φ decides a language L on A if time(φ, x) <∞
for any x in A∗ and output(φ, x) = yes if x ∈ L and no otherwise. A language
is decidable if there exists a Turing machine that decides it, and decidable
in polynomial time if there exists a polynomial time Turing machine that
decides it.

Remark 2.1. A:todo: non decidable and non polynomial time Turing
machine. 4

Definition 2.2. A decision problem is a pair (X,Y ) where X is a language
decidable in polynomial time, and Y ⊆ X. Language X is the input, and its
elements are the instances. Elements of Y are the instances for which the
answer is yes, and X\Y those for which the answer is no.

An algorithm for a decision problem (X,Y ) is a Turing machine comput-
ing the function f : X → {yes, no} that associates yes to instances in Y and
no to instances in X\Y .
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Practically, when we study an algorithm, we never specify the precise
Turing machine describing it. Indeed, we only need to know the size of the
input, that is, the size of the string that would be required to encode the
input, and an upper bound on the number of steps. To compute this upper
bound, it suffices to describe the algorithm in terms of elementary operations,
such as arithmetic operations, which are known to be implementable in a
fixed/polynomial number of steps on a Turing Machine.

2.2 Complexity classes P and NP

Recall that given two functions f and g, function f is a O(g(x)) if there
exists a number M > 0 such that f(x) ≤ Mg(x) for any x in X. A poly-
nomial algorithm φ on an input language X is algorithm for which there is
a polynomial P such that the time complexity of φ is in O(P (size(x))) for
any instance x in X. Hence, a polynomial solution algorithm for a decision
problem is a solution algorithm such that there is a polynomial P satisfying
time(φ, x) = O

(
P (size(x))

)
, where x takes its values in the instances the

input language X.

Definition 2.3. A polynomial problem is a decision problem for which there
exists a polynomial solution algorithm. We denote by P the class of polyno-
mial problems.

For instance, the linear programming inequalities problem stated
in the introduction of the chapter is in P.

Skill 2.1. How to show that a problem is in P?

It suffices to exhibit a polynomial algorithm

For difficult problems such as facility location, we are not able to exhibit
a polynomial algorithm proving that they belong to P. But theses problems
can be proved to be in a larger class called NP . A problem is in NP if
we can check in polynomial time a “certificate”. For instance, for the facility
location problem, a certificate is a site selection S, and we can check in
polynomial time that c(S) ≤ c0.

Definition 2.4. A decision problem P = (X,Y ) is in NP if there exists a
polynomial P and a decision problem P ′ = (X ′, Y ′) in P such that

X ′ =
{
x#c : x ∈ X, c ∈ AP (bsize(x)c)}

and

Y =
{
y ∈ X : there exists a string c in AP (bsize(y)c)such that y#c ∈ Y ′

}
,

where a#b denotes the concatenation of strings a and b.
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A string y#c ∈ Y ′ is called a certificate for y, as string c enables to prove
y in Y . An algorithm for (X ′, Y ′) is called a certificate checking algorithm.

Proposition 2.5. P ⊆ NP .

We do not know if P = NP , but P 6= NP is one of the most famous
and widely believed conjecture in computer science. The Clay Mathemat-
ics Institute offers 1 million dollars to the first person that will solve this
conjecture.

Exercise 2.2. Prove that facility location belongs to NP . 4

As NP contains P as well as difficult problems such that facility
location, proving that a problem P belongs to NP is not a good indication
of its difficulty. We therefore introduce a notion of difficulty that amounts
to say that “problem P is as difficult as the most difficult problems in NP ”.

A reduction of a problem P = (X,Y ) to a problem P ′ = (X ′, Y ′) is a
mapping f : X → X ′ such that

x ∈ Y ⇔ f(x) ∈ Y ′ for any x in X.

It is a polynomial reduction if there exist a polynomial P such that size
(
f(x)

)
=

O
(
P (size(x))

)
. We say that a problem P polynomially reduces to a problem

P ′, or simply reduces to P2, if there exists a polynomial reduction of P to P ′.
We say that two problems P and P ′ are polynomially equivalent if P reduces
to P ′ and P ′ reduces to P. The following proposition shows the interest of
these definitions.

Proposition 2.6. Let P and P ′ be two decision problems such that P reduces
to P ′. Then if P ′ is in P, then P is in P.

Hence, the fact that P reduces to P ′ means that P ′ is at least as hard
as P. This enables us to define the class of the “hardest” problems in NP .

Definition 2.7. A problem P is NP -complete if it is in NP and any
problem P ′ in NP polynomially reduces to P.

Proposition 2.8. Let P be a problem. If P is in NP , and there exists an
NP -complete problem P ′ that polynomially reduces to P, then P is NP -
complete.

Once some problems has been proved to be NP -complete, Proposi-
tion 2.8 can be used to prove new NP -completeness result. But for this
kind of proofs to work, we need to prove using another kind of arguments
that a first problem is NP -complete. This has been done by Cook [1971],
who proved that the satisfiability problem is NP -complete.
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Skill 2.2. How to prove that a problem P is NP complete?

The proof is in two steps. First, prove that P is in NP . And second,
reduce an NP -complete problem to P. A:give an exercise

2.3 Optimization problems

Informally an optimization problem is defined by and input, an output, and
an objective to minimize or maximize. For instance, here is the optimization
version of the facility location problem.

Facility location
Input. Three integers m, n, and k, a cost matrix A = (aij) in Qm×n

+ .
Output. A site selection S ⊆ [m] satisfying |S| ≤ k of minimum∑n

j=1 mini∈S aij .

As optimization problems are not decision problems, they cannot be in NP .
However, they can be at least as hard as any problem in NP . This para-
graph introduces the corresponding notion. Again, we will need a formal
definition of optimization problems. The details of the definition below are
not required for the understanding of the lecture.

Definition 2.9. An optimization problem P is a quadruple (X, (Sx)x∈X , c, goal)
where

- X is a language over {0, 1} decidable in polynomial time.

- Sx ⊆ {0, 1}∗ for each x in X, and there exists a polynomial P satisfying
size(y) ≤ size(x) for each y ∈ Sx, and the languages

{
(x, y) : x ∈ X, y ∈

Sx
}
and

{
x ∈ X : Sx = ∅

}
are decidable in polynomial times.

- c :
{

(x, y) : x ∈ X, y ∈ Sx
}
→ Q is a polynomially computable function.

- goal ∈ {min,max}.

Elements of X are the instances of the problem. Given an instance x,
the elements Sx is the set of feasible solutions and is denoted by Sol(x).
The value of an instance is val(x) = goal

{
c(x, y) : x ∈ X, y ∈ Sx

}
. The

optimal solutions are the elements y of Sx that c(x, y) = val(x). We denote
by Opt(x) the set of optimal solutions.

A decision problem P1 = (X1, Y1) polynomially reduces to an optimiza-
tion problem P = (X2, (Sx)x∈X , c, goal) if there exists a polynomially com-
putable function f : X1 → X2×Q and a polynomial P such that size(f(x)) =
O
(
P (size(x))

)
, and x ∈ Y if and only if val(x′) ≤ c where (x′, c) = f(x).
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Definition 2.10. An optimization problem P is NP -hard if all the prob-
lems in NP polynomially reduce to P.

Skill 2.3. Proving that an optimization problem is NP -hard

To prove the NP -hardness of an minimization problem,

Optimization problem
Input. An x in X
Output. A feasible solution y in Yx of minimum c(x)

start by considering the decision version of the problem

Decision problem
Input. An x in X, a rational c0 in Q.
Question. Is there a solution y in Yx such that c(x) ≤ c0

and then prove that an NP -complete problem P reduces to decision prob-
lem. It suffices to replace “min” and “≤” by “max” and “≥” to deal with
maximization problems. A collection of NP -complete problems P will be
introduced in the following chapter. When none of these are easily reduced
to the decision problem we are considering, a good resource is Wikipedia’s
list of NP -complete problems.

2.4 Further readings

Books on complexity theory.
- Ausiello et al. [2012]

- Garey and Johnson [2002]

- Papadimitriou [2003]

2.5 Exercises

Many decision and optimization problems are introduced, and exercises on
their complexity are in the subsequent chapters. See notably the exercises
of Chapter 3 on graphs.
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Chapter 3

Graphs

This chapter introduces basic notions on graphs, as well as terminology and
notations.

3.1 Undirected graphs

3.1.1 Definition

A graph G or undirected graph is a pair (V,E) where V is a finite set and E
is a collection of unordered pairs of V . Elements of v are called vertices (or
nodes), and elements of E edges. The cardinal |V | is generally denoted by
n, and |A| by m.

As a graph G can be described by the list of its edges, where each vertex
and edge is identified by an integer, the size of a graph G = (V,E) in the
sense of complexity theory is in O

(
m log(n) + n log(m)

)
.

Remark 3.1. More formally, E is a multiset on V 2. A multiset M on a set
S is a pair (S,mM ) where mM is a map from S to Z+. Set S is called the
universe, and mM is the multiplicity maps. The support of M is the set of
s in S such that mM (s) > 0. 4

There can be edges of the form (v, v). Such edges are called loops. A given
edge (u, v) can be several times in E. The number of times is occurs in E is
called its multiplicity . A simple graph is a graph with no loops and such that
edges in E have multiplicity one. The complement G of a graph G = (V,E)
is the simple graph (V,E′) where E′ =

{
(u, v) : u 6= v and (u, v) /∈ E

}
.

Two vertices u and v are adjacent if the unordered pair (u, v) belongs to
E. A vertex u is a neighbor of v if u and v are adjacent. We denote by

N(v) the set of neighbors of v.

An edge e is incident with a vertex v if e is of the form (u, v) for some u
in E. We denote by

δ(v) the set of edges incident with v.

21
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An edge e is incident with a set of vertices U if e = (u, v) for some u ∈ U
and v /∈ U . We denote by N(U) the set of edges that are incident to U .

The degree degG(v) of a vertex v is the number of edges incident with v.
We denote it by deg(v) when graph G is clear from the context.

Exercise 3.1. Prove that
∑

v∈V deg(v) is an even number. 4

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. Given V ′ ⊆ V , the subgraph induced by V ′ is the
graph G′ = (V ′, E′) where E′ is the collection of edges (u, v)

A complete graph is a simple graph such that all the vertices are con-
nected. We denote by Kn the complete graph with n vertices.

Exercise 3.2. How many edges has Kn? 4

3.1.2 Adjacency and incidence matrix

The adjacency matrix of a graph G = (V,E) is the matrix A of Zn×Zn such
that

Auv = number of edges connecting u and v.

Remark that A is symmetric.
The incidence matrix is the Z|V | × Z|E| matrix such that

Bve =


0 if v /∈ e,
1 if v ∈ e and e 6= (v, v),
2 if e = (v, v).

3.1.3 Paths, connectedness

A path P in a graph G = (V,E) is a sequence

(v0, e1, v1, . . . , en, vn)

such that vi is a vertex in V for all i in {0, . . . , n}, and ei is an edge in E
adjacent to vi−1 and vi for all i in {1, . . . , n}. A path is simple if it visits
each edge at most once, and elementary if it visits each vertex at most once.
We denote respectively by V (P ) and E(P ) the set of edges of P .

Remark 3.2. Some authors call a walk what we have defined as a path, a
trail a walk in which each edge is contained at most once, and a path a trail
in which each vertex is contained at most once. 4

Vertex e0 is the origin vertex or first vertex of P , and vn is its destination
or last vertex . An o-d path is a path with origin o and destination d. We
write v ∈ P (resp. e ∈ P ) to indicate that vertex v (resp. edge e) belongs to
P . Two paths are vertex-disjoints (resp. arc disjoints) if there is no vertex v
(resp edge e) that belongs to the two paths.
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Exercise 3.3. Let A be the adjacency matrix of G = (V,E). Characterize
Akuv in terms of paths in G. 4

A graph is connected if there exists a v-w path for each (v, w) in V 2.
The connected components of G are the connected induced subgraph G′ =
(V ′, E′) of G that are maximal for inclusion (adding an vertex to V ′ makes
it non connected).

Exercise 3.4. Let u v be the binary relation on V indicating if there
exists a u-v path.
1. Prove that is an equivalence relation.

2. What are the equivalence classes of on G?
4

3.1.4 Cycles

A cycle or circuit C in a graph G is a path v0, . . . , vk such that v1, . . . , vk is
simple and v0 = vk. Some authors keep the term circuit for directed graph
and cycle for undirected graphs.

A Hamiltonian path in a graphG is an elementary path such that V (P ) =
V (G). A Hamiltonian cycle C in a graph G is a cycle such that V (C) =
V (G). A Hamiltonian graph is a graph that admits a Hamiltonian cycle.

Hamiltonian cycle problem
Input. An undirected graph G
Question. Is there an Hamiltonian cycle in G?

The Hamiltonian path problem is obtained by replacing “cycle” by “path”.

Theorem 3.1. The Hamiltonian path problem and the Hamiltonian
cycle problem are NP-complete.

An Eulerian path P in a graph G is a simple path such that V (P ) =
V (G). An Eulerian cycle C in a graph G is a cycle such that E(C) = E(G).
Consider the following problem.

Eulerian cycle problem
Input. An undirected graph G
Question. Is there an Eulerian cycle in G?

Proposition 3.2. A graph G = (V,E) is Eulerian if and only if degG(v) is
even for all v in V .

Exercise 3.5. Prove Proposition 3.2 4
Exercise 3.6. Is the Eulerian cycle problem NP-complete ? 4
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3.1.5 Trees

A forest is a graph that contains no cycle. A tree is a connected forest.
Exercise 3.7. Prove that each connected component of a forest is a tree. 4
Exercise 3.8. How many edges has a tree with n vertices? 4

3.1.6 Cliques, stable sets, matching, covers

We now introduce sets of vertices and edges of special interest.
A clique C in a graph G is a subset of vertices whose induced subgraph

is complete. The size of a clique is its number of vertices. A stable S is a
subset of vertices such that no two vertices of S are adjacent. It is also called
an independent set . A matching M in graph G is a subset of edges such that
there are no two edges in M are incident with the same vertex v. A vertex
cover C is a subset of V such that such that each edge of A is incident with
at least a vertex in C. An edge cover C is a subset of E such that any vertex
in V has an incident edge in C. Figure 3.1 illustrates these notions.

The following decision problems are associated to these notions.

Maximum clique
Input. A graph G, an integer k
Question. Is there a clique in G of size at least k.

Maximum stable
Input. A graph G, an integer clique
Question. Is there a stable in G with k vertex?

Maximum matching
Input. A graph G, an integer k
Question. Is there a matching with k edges in G?

Minimum vertex cover
Input. A graph G, an integer k
Question. Is there an vertex cover with k vertices?

Minimum edge cover
Input. A graph G, an integer k
Question. Is there an edge cover with k edges?

The following theorem is admitted.

Theorem 3.3. The maximum clique, the maximum stable, and the
minimum vertex cover problems are NP-complete.
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Figure 3.1: Example of a. clique, b. stable set, c. matching, d. vertex cover,
and e. edge cover
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Details on the following algorithm are given in Chapter 7.

Theorem 3.4. The maximum matching and the minimum edge cover
problem are polynomial.

We denote by

ω(G) = clique number of G = maximum size of a clique in G, (3.1a)
α(G) = stable set number of G = maximum size of a stable set in G.

(3.1b)

ν(G) = matching number of G = maximum size of a matching in G.
(3.1c)

τ(G) = vertex cover number of G = minimum size of a vertex cover in G.
(3.1d)

ρ(G) = edge cover number of G = minimum size of an edge cover in G.
(3.1e)

Exercise 3.9. Prove that ν(G) ≤ τ(G) and α(G) ≤ ρ(G). 4
Exercise 3.10. Show that S is a stable in and only if V \S is a vertex cover.
Deduce a relation between α(G) and τ(G). 4
Exercise 3.11. Show that ω(G) = α(G), where G is the complement of G.
4

Application 3.1. Transmitting messages over a noisy channel

A:todo: an introduction to Shannon capacity. Finish with an exercise

3.1.7 Coloring

A coloring of a graph G = (V,E) is partition of V into stable sets. It is
sometimes defined as a function φ : V → i such that φ(u) 6= φ(v) if (u, v)
is in E. The number of colors of a coloring is the number of edges in the
partition. A graph is k-colorable if it has a coloring with at most k colors.
Let

χ(G) = chromatic number of G (3.2)

be the minimum number of colors in a coloring of G.
Exercise 3.12. Show that ω(G) ≤ χ(G). 4

Coloring
Input. A graph G, an integer k.
Output. Is there a k-coloring of G?

Theorem 3.5. The coloring problem is NP-complete.
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K5 K3,3

Figure 3.2: The two smallest non-planar graphs

Application 3.2. Coloring and scheduling

Exercise 3.13. A set F of formations must be given to employees of a firm.
Each employee i must follow a subset Fi of formations. The firm wants to
find the minimum number of formation slots it must schedule so that each
employee can attend to its formations. Model this problem as a coloring
problem. 4

3.1.8 Planarity

A planar graph is a graph that can be embedded in the plane, i.e., that can
be drawn on the plane in such a way that two distinct edges intersect only
on vertices. The region delimited by the drawing of the graph are called
the faces. An edge or a vertex is incident to a face if it is contained in the
boundary of the face. Two faces are adjacent if they are incident with a
common edge. There is a unique unbounded face called the outer face.

Remark 3.3. This definition can be made more formal, but the formal def-
inition is not required to understand the discussion below. The topological
graph associated with a graph G is the topological space consisting of V , and
for each edge e, a curve φ(e) such that φ(e) ∩ φ(f) = e ∩ f . An embedding
of G in the plane is a continuous injection from G to the plane R2. 4

The importance of planar graphs comes from their numerous applica-
tions, such as network visualization or electrical circuits (chip) layout design
A:todo: an exercise on the topic, and from the fact that many NP-
complete problems on graphs become polynomial when restricted to planar
graphs. This is for instance the case of max-cut), but not of graph col-
oring problem. In particular, practically efficient divide and conquer algo-
rithms can be devised for problems on planar graphs thanks to the planar
separator theorem [Lipton and Tarjan, 1979]. A:todo: an exercise on
the topic.

Figure 3.2 depicts the two smallest non-planar graphs. Proving that these
graphs are non-planar is not completely trivial, and the object of Exercise
A:todo
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The dual graph of a planar graph G is the graph whose vertices are the
faces and whose edges are the pairs of adjacent faces.

A:todo: figure
The following theorem took 125 years to be proved and is the first major

theorem proved with the help of a computer.

Theorem 3.6. (Appel et al. [1977]) Every planar graph is 4-colorable.

3.1.9 Minors

Let G = (V,E) and X be a subset of V . By contracting X, we mean
removing X from V and replacing it by a new vertex x, removing all edges
with both extremities in X, and replacing all edges (u, v) with u ∈ X and
v ∈ V \X by (x, v). Given e ∈ E and X ⊆ E, we denote G/e and G/X the
graph obtained by contracting e or X.

A graph H is a minor of a graph G if it can be obtained form G by a
series of contraction and deletion of edges.

Minors play a key role in theoretical graph theory as many family of
graphs can be characterized as graphs that do not contain some minors. The
following theorem is a well-known example, the graph cited being illustrated
on Figure 3.2.

Theorem 3.7. (Kuratowski [1930]) A graph is planar if and only if it does
not admit K5 and K3,3 as minors.

3.2 Directed graphs

A directed graph D or digraph is a pair (V,A) where V is a finite set and A
is a multiset on ordered pairs elements of V – a collection of ordered pairs
on V 2. V is the set of vertices and A is the set of arcs a.

The underlying undirected graph of a digraph D = (V,A) is the graph
G = (V,E) obtained by removing the orientation of the arcs in A. In that
case, we say that D is an orientation of V . The reverse graph of D = (V,A)
is the digraph D−1 = (V,A−1) where A−1 =

{
(v, u) : (u, v) ∈ A

}
As for undirected graph, the multiplicity of an arc (u, v) is the number

of times it occurs in A, a loop is an arc (v, v) for some v in V . A digraph is
simple if arcs have multiplicity at most one and there is no loop.

An arc a = (u, v) leaves u or is outgoing from u and enters v or is
incoming to v. If a is in A, then u is an inneighbor of v and v is an outneighbor
of u. We denote by

δ−(v) the set of arcs incoming to v, (3.3a)
δ+(v) the set of arcs incoming to v, (3.3b)
N−(v) the set of inneighbor of v, (3.3c)
N+(v) the set of outneighbors of v. (3.3d)
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Given a set of vertices U , we define similarly δ−(U), δ+(U), N−(U), and
N+(U). The indegree and outdegree of a vertex v are respectively the number
of arcs incoming to and outgoing from v, and are denoted by deg−(v) and
deg+(v). A source in a digraph is vertex that has no incoming arcs, and a
sink is a vertex that has no outgoing arcs.

The notions of subgraph and induced subgraph are defined as in the undi-
rected case.

3.2.1 Adjacency and incidence matrices

The adjacency matrix M of a digraph is the V × V matrix where

mu,v is the number of arcs from u to v in D. (3.4)

The incidence matrix is the V ×A matric B where

bu,a =


−1 if a = (u, v) with v 6= u,
1 if a = (v, u) with v 6= u,
0 otherwise.

(3.5)

3.2.2 Paths, connected components, cuts

A path in a digraph D = (V,A) is a sequence

(v0, e1, v1, . . . , en, vn)

such that vi is a vertex in V for all i in {0, . . . , n}, and ai is an arc in A from
vi−1 to vi for all i in {1, . . . , n}. An o-d path is a path from o to d. A path
is simple if it visits each edge at most once, and elementary if it visits each
vertex at most once. We denote respectively by V (P ) and A(P ) the set of
vertices and the set of arcs of P .

A vertex s is connected to a vertex t if there exists an s-t path. We
denote by

u v (3.6)

the fact that u is connected to v. In a directed graph, connectedness is no
more an equivalence relation. Two vertices s and t are strongly connected s
is connected to t and t to s. Strong connectedness is an equivalent relations,
and its equivalence classes are the strong connected components. The con-
nected components of the underlying undirected graph are called the weak
connected components of a digraph.

A cut in a directed graph a set of arcs B such that B = δ−(U) for some
set of vertices U .

Exercise 3.14. Show that a set B is a cut if and only if it is of the form
δ+(U) for some U ⊆ V . 4
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3.2.3 Cycles, acyclic digraphs and directed trees

A cycle is a directed graph is a v-v path that contains at least one arc
and such that the path obtained by removing the last arc is elementary. A
digraph is acyclic of it contains no cycle.

Exercise 3.15. Prove that if D is an acyclic digraph and u 6= v, then u and
v cannot be strongly connected. 4

A topological ordering on a digraph D = (V,A) is a total ordering � on
V such that u v implies u � v.
Exercise 3.16. Give a simple (polynomial) algorithm computing a topological
ordering on an acyclic digraph. Prove that it returns a topological ordering.
4

A directed tree is a directed graph whose underlying digraph is a tree.
An r-rooted tree is a directed tree such that has a unique source, r, that is
call its root . Sinks of a rooted tree are called leaves.

Hamiltonian and Eularian paths, cycles, and graphs in a directed graph
are defined as in undirected graph, the only difference being that undirected
paths are replaces by directed paths.

Exercise 3.17. Prove that a digraph is Eulerian if and only if deg−(v) =
deg+(v) for all v in V . 4

3.3 Further readings

By increasing difficulty
- Diestel [2018]

- Bondy et al. [1976]

- Bollobás [2013]
See also Schrijver [2003], which is not specifically on graphs but contains

much content.

3.4 Exercises

Exercise 3.18. Characterize the graphs that admits a circuit C that is both
Hamiltonian and Eulerian. 4
Exercise 3.19. Prove that the Hamiltonian path problem is NP-complete
using the fact that the Hamiltonian cycle problem is NP-complete, and
conversely, prove that the Hamiltonian cycle problem is NP-complete
using the fact that the Hamiltonian path problem is NP-complete. 4



Chapter 4
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Chapter 5

Shortest paths and dynamic
programming

This chapters focuses on the shortest path problem.

Shortest path problem
Input. A digraph D = (V,A), a cost function c : A→ Q.
Output. A simple o-d path of minimum cost

∑
a∈P

c(a).

It of course has the following analogue in undirected graphs.

Shortest path problem (undirected version)
Input. An undirected graph G = (V,E), a cost function c : A→ Q.
Output. A simple o-d path of minimum cost

∑
e∈P

c(e).

The undirected version can be reduced to the directed version by solving
the instances in the digraph D = (V,A) where A contains the arcs (u, v)
and (v, u) for each (undirected) edge (u, v) in E, which we uses in all cases
except on graph with negative cost arcs but no negative cost cycles.

Theorem 5.1. The shortest path problem is NP -hard.

However, as we will see in this chapter and sum-up in Table 5.1, there
are many polynomial cases. In particular, the shortest path problem be-
comes polynomial in the absence of negative cost cycles C, that is, cycles C
satisfying ∑

a∈C
ca < 0.

Acyclic undirected graphs are note mentioned in Table 5.1 because they
correspond to trees and forests, and hence there is a unique o-d path is the
graph is connected, which makes the problem trivial.

33
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Problem Algorithm Complexity
Acyclic digraph Dynamic programming

(topological ordering)
O(m)

Digraph, c(a) ≥ 0 Dijkstra O(n2)
Digraph, no absorbing cycle Dynamic programming

(Ford-Bellman)
O(nm)

Digraph, generic c NP -complete
Undirected graph, c(a) ≥ 0 Dijkstra O(n2)
Undirected graph, no ab-
sorbing cycle

T-joints O(n3)

Undirected graph, generic c NP -complete

Table 5.1: Shortest path algorithms – applies to directed and undirected
graphs if not mentioned

5.1 Dynamic programming

5.1.1 General case: Ford Bellman algorithm

Dynamic programming algorithms follow from the following observation.

Proposition 5.2. Let P be an o-v path with k > 0 arcs, and u be the path
before v on P , and P ′ the o-u subpath of P obtained by removing the last arc
of P . If P is a shortest path among the o-v paths with k arcs, then P ′ is a
shortest path among the o-u paths with k − 1 arcs

Proof. Let Q′ be an o-u path with k − 1 arcs such that∑
a∈Q′

ca <
∑
a∈P ′

ca,

and Q be Q′ followed by u-v. Then Q is an o-v path satisfying∑
a∈Q

ca <
∑
a∈P

ca.

Let f(v, k) be equal to the length of a shortest o-v path with at most k
arcs if such, and to +∞ if no such path exists. Proposition 5.2 ensures that
f satisfies Bellman or dynamic programming equation

f(v, k + 1) = min
u∈N−(v)

c(u,v) + f(u, k), (5.1)

which enables to compute f iteratively knowing that

f(v, 0) =

{
0 if v = o,
+∞ otherwise. (5.2)
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This iterative algorithm is known as the Ford-Bellman algorithm. Keeping
in memory an argmin in (5.1) enables to rebuild a shortest path with k
vertices. However, if the digraph contains negative cost cycles, the shortest
path computed is not necessarily elementary.

Proposition 5.3. If D has no negative cost cycles, then the shortest path
problem can be solved in O(mn) using the Ford-Bellman algorithm.

Proof. As D has no negative cost cycles, an elementary shortest path P ′

can be obtained from a shortest path P by removing cycles from P . Hence,
there is an elementary shortest path of length at most n − 1. Let k0 be
in argmink∈[n] f(d, k), let P ′ be a shortest path of length k0 obtained from
Ford-Bellman algorithm, and let P be the graph obtained by removing cycles
from P ′. Then P is an elementary shortest path.

Ford-Bellman algorithm enables to compute f(d, k) for k ∈ [n] in O(mn).
All the other steps of the approach are at most in O(n).

5.1.2 Acyclic digraphs

Proposition 5.2 can be strengthened in acyclic digraphs. We underline that
in an acyclic digraph, all the paths are elementary.

Proposition 5.4. Let D be an acyclic digraph, P be a shortest o-v with at
least one arc, u be the vertex before v on P , and Q be the o-v subpath of P .
If P is a shortest o-v path, then Q is a shortest o-u path.

Exercise 5.1. Prove Proposition 5.4. 4
Hence, denoting f(v) the length of a shortest o-v path, we have the

following dynamic programming equation.

f(v) = min
u∈N−(v)

f(u) + c(u,v) (5.3)

Recall that a topological ordering is an ordering � on V such that (u, v) ∈
A implies u � v, and that a digraph is acyclic if and only if it admits
a topological ordering. A topological ordering on D can be computed in
O(m+ n) using Algorithm 1.

Let � be a topological ordering on D. The f(v) for o � v � D can be
computed iteratively along � in O(m+ n) using

f(v) =


∞ if v ≺ o
0 if v = o

min
u∈N−(v)

f(u) + c(u,v) otherwise.
(5.4)

We have proved the following proposition.

Proposition 5.5. A topological order on an acyclic digraph can be computed
in O(m+ n) by dynamic programming.



36CHAPTER 5. SHORTEST PATHS AND DYNAMIC PROGRAMMING

Algorithm 1 Compute a topological order on D.
Input: a digraph D = (V,A)
Initialization: L← empty list, S ← ∅.
S ←

{
v :
}

while S 6= ∅ do
remove a vertex v from S
add v at the end of L
remove from A all the arcs in δ+(v)
add to S all the vertices w in N+(v) such that δ−A(w) = ∅

end while
return L (L is sorted along a topological order �)

5.1.3 Dynamic programming, a general method

5.2 Non negative costs and Dijkstra Algorithm

In this section, we consider the case where ca ≥ 0 for all a ∈ A.

Proposition 5.6. Let D = (V,A) be a digraph, k < |V | be an integer, and
Vk be a set of k nearest vertices of o (including o). Let v be a vertex in V \Vk
minimizing min

u∈N−(v)∩Vk
cu,v. Then Vk ∪ {v} is a set of k + 1 nearest vertices

to v.

Proof.

Algorithm 2 Dijkstra algorithm
Input: a digraph D = (V,A), costs c ∈ QA

+

Initialization: U ← ∅, dv ←
{

0 if v = o,
+∞ otherwise.

while V \U 6= ∅ do
Let v in V \U be such that d(v) = minu∈V \u du.
Add v to u
dw ← min(dw, dv + c(v,w) for all w ∈ N+(v).

end while
return d.

Algorithm 2 states Dijkstra algorithm for graphs with arcs of multiplicity
at most one. It is easily generalized to graphs with arbitrary multiplicity.

Proposition 5.7. Dijkstra algorithm converges in O(m+ n log(n)) if the L
the list of vertices to treat is implemented as a Fibonacci heap, and d returned
is such d(v) is the length of a shortest o-v path for all v.
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5.3 A∗ algorithm

The algorithm we introduce enables to speed-up the resolution, at the cost
of a long preprocessing time.

5.3.1 Algorithm

Proposition 5.8. Let cubod be an upper bound on the cost of a shortest o-d
path, P be an o-v path, and bv be a lower bounds on the cost of a shortest
o-d path. If cP + bv > cubod , then P is not the subpath of an optimal path.

Algorithm 3 A∗

Input: A digraph D = (V,A), costs c in QA, bounds b in QV .
Initialization: cubod ← +∞, L← {empty path in o} with key 0
while L is not empty do
Extract from L a path P of minimum key
Let v be the destination of P
if v = d and cP < cubod then
cubod ← cP

else
for all w ∈ N+(v) such that cP + bv < cubod do

Add P followed by (v, w) to L with key cP + bv.
end for

end if
end while
return: cubod

Proposition 5.9. If c > 0 and b ≥ 0, then A∗ converges after a finite
number of iterations. Furthermore, if bv ≤ cP for all v-d paths P , then cubod
returned is the cost of a shortest o-v path.

A∗ can be proved to converge under more general conditions than those
of Proposition 5.9.

5.3.2 Generating bounds

5.4 Exercises
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Chapter 6

Flows

Teaching remark: This chapter is long. And maximum s-t flows and minimum
cost flow are somehow redundant. Suggestions:
- Teach maximum s-t flows on the blackboard. (1h)

- Teaching minimum cost flow and linear programming using the video-
projector (30min)

- In the linear programming, do not prove the max-flow min-cut Lagrangian
duality during the lesson. The dualization of the max flow is not completely
easy. Put it as a corrected exercise.

- Do exercises on flows also during the next sessions.

6.1 Maximum s-t flows, minimum s-t cuts

6.1.1 Problem statement

Let D = (V,A) be a digraph, s and t be two distinct vertices in V , and
u : A→ R+ be a capacity function.

Definition 6.1. An s-t flow is a function f : A→ R+ such that∑
a∈δ−(v)

f(a) =
∑

a∈δ+(v)

f(a) for all v ∈ V \{s, t}.

It is an s-t flow subject to u or under u if f(a) ≤ u(a) for all a in A. The
value of a s-t flow f is

val(f) =
∑

a∈δ+(s)

f(a)−
∑

a∈δ−(s)

f(a).

Max flow
Input. A digraph D = (V,A), two distinct vertices s and t in V , and
a capacity function u : A→ R+.
Output. An s-t flow under u of maximum value.

39



40 CHAPTER 6. FLOWS

We recall the definition of cut.

Definition 6.2. An s-t cut is a set of arcs B such that B = δ+(U) where
U ⊆ V contains s but not t. The capacity u(B) of a cut b is the sum of the
capacity of its arcs.

u(B) =
∑
a∈B

u(A).

Min cut
Input. A digraph D = (V,A), two distinct vertices s and t in V , and
a capacity function u : A→ R+.
Output. An s-t cut B of minimum capacity u(B).

6.1.2 Max flow min cut theorem

Remark the following link between flows and cut.

Proposition 6.3. Let f be an s-t flow under u and B = δ+(U) be an s-t
cut. We have

val(f) =
∑

a∈δ+(U)

f(a)−
∑

a∈δ−(U)

f(a),

and
f(B) ≤ u(B).

Proof. Following the definition of a flow f under u, we have

val(f) =
∑

a∈δ+(s)

f(a)−
∑

a∈δ−(s)

f(a) +
∑

v∈U\{s}

∑
a∈δ(v)

f(a)−
∑

a∈δ−(v)

f(a)

︸ ︷︷ ︸
0

=
∑

a∈δ+(U)

f(a)−
∑

a∈δ−(U)

f(a)

which gives the first result. The second result then follows from

0 ≤ f ≤ u.

Consider and instance of (D = (V,A), s, t, u) of the maximum flow
problem. Given an arc a = (u, v) in A, we denote by ←−a a new arc (v, u) in
A. Given an s-t flow f , the residual capacities capacities uf :

←→
A → R+ are

defined by{
uf (a) = u(a)− f(a)
uf (←−a ) = f(a)

for all a ∈ A, and
←→
A = A ∪ {← a : a ∈ A}
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The residual graph is the capacitated graph
←→
Df = (V,Af ) where

Af = {a ∈
←→
A : uf (a) > 0}.

An f -augmenting path in an s-t path in the residual graph. To augment f
by γ along an s-t path consists means, for each a in A, to increase f(a) by
γ if a ∈ P and to decrease it by γ if ← a in P .

Theorem 6.4. An s-t flow is maximum if there is no f -augmenting path.

Proof. Suppose that there is no augmenting path, and the U denote the
connected component of s in the residual graph. Then val(f) = u(U) and
Proposition 6.3 ensures that f is maximum. Conversely, suppose that there
is an f -augmenting path P in the residual graph. Then f can be augmented
by γ = min

a∈P
uf (a).

As an immediate corollary of Proposition 6.3 and Theorem 4, we obtain
the main theorem of flow theory.

Theorem 6.5. (Max-flow min-cut Theorem) The maximum value of an s-t
flow is equal to the minimum value of an s-t cut.

Exercise 6.1. Prove that given a maximum flow, we can find a minimum cut
in O(m). 4

Solution. Follows from the proof of Theorem 6.4.

6.1.3 Edmonds-Karp algorithm

Edmonds-Karp Algorithm (Algorithm 4) is based on this result.

Algorithm 4 Edmonds-Karp Algorithm
1: Input: a digraph D = (V,A), s, t ∈ A, and u : A→ R+.
2: Output: an s-t flow f of maximum value.
3: f(a)← 0 for all a ∈ A;
4: Find an f -augmenting path P with a minimum number of arc; Stop if

there is none;
5: Augment f by min

a∈P
uf (a);

Theorem 6.6. (Edmonds and Karp [1972]) Algorithm 4 converges after at
most mn

2 augmentation, and therefore solves the maximum flow problem
in O(mn2).

Proof. TO DO
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Remark that if capacities are integral, flow is always augmented by and
integer number. Hence, we obtain as a corollary the following theorem.

Corollary 6.7. If the capacity u is integer, then there exists an integer
maximum flow, and Edmonds-Karp algorithm finds one.

Remark 6.1. The first algorithm for s-t flows is the Ford and Fulkerson
algorithm, which is obtained by removing “with a minimum number of arc”
in Edmonds Karp algorithm. 4

6.2 Minimum cost flow

6.2.1 Problem statement

Let D = (V,A) be a digraph, ` : A → R+ and u : A → R+ be capacities
such that ` ≤ u, and b : V → R be such that∑

v

b(v) = 0. (6.1)

Definition 6.8. Given D, `, u, and b as above, a b-flow is an application
f : A→ R+ such that∑

a∈δ+(v)

f(a)−
∑

a∈δ−(v)

f(a) = b(v) for all v in V,

and `(a) ≤ f(a) ≤ u(a) for all a in A. A circulation is a b-flow with b = 0.

Given a cost function c : A→ R, the cost of a b-flow is∑
a∈A

c(a)f(a).

Minimum cost flow
Input. A digraph D = (V,A), ` : A→ R+ and u : A→ R+ such that
` ≤ u, b : V → R such that

∑
v∈V b(v) = 0, and c : A→ R+

Output. A b-flow of minimum cost.

6.2.2 Optimality criterion

Let f be a b-flow. The residual graph is the digraph Gf = (V,Af ) where

Af =
{
a ∈ A : u(a)− f(a) > 0

}
∪
{←−a : a ∈ A and f(a) > `(a)

}
Again, we define, for each a in A

uf (a) = u(a)− f(a) and uf (←−a ) = f(a)− `(a).
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We extend c to
←−
A by c(←−a ) = −c(a). An f -augmenting cycle is a cycle in

Gf , and we define
c(C) =

∑
a∈C

c(a).

Theorem 6.9. A b-flow f is of minimum cost if there is no f -augmenting
cycle C such that c(C) < 0.

Exercise 6.2. Proof of Theorem 6.9
1. Let g and f be two b-flows. Show that g − f is a circulation in Gf .

2. Show that any circulation h can be decomposed as
∑

C∈C aC1C where C
is a collection of cycles, aC ∈ R+, and 1C : A → {0, 1} is the indicator
function of the arcs of C.

3. Deduce the Theorem 6.9.
4

6.2.3 Minimum mean cycle-canceling algorithm

Given an instance of the minimum cost flow and a b-flow f , the mean cost
of a cycle in the residual graph is

c(C) =
c(C)

|C|
.

Exercise 6.3. Prove that a cycle of minimum mean-cost can be computed in
polynomial time (in O(mn)). 4

Solution. A cycle of minimum mean-cost can be computed in O(mn) using
the dynamic programming algorithm of Equation (5.1).

Goldberg and Tarjan proposed Algorithm 5 to solve the minimum cost
flow problem.

Algorithm 5 Minimum mean cycle-canceling algorithm
1: input: A digraph D = (V,A), ` : A → R+ and u : A → R+ such that
` ≤ u, b : V → R such that

∑
v∈V b(v) = 0, and c : A→ R+

2: output: A b-flow of minimum cost.
3: find a b-flow f
4: find a minimum mean cost cycle in the residual graph Gl. If C has

negative total cost, stop
5: augment the flow along C by min

a∈C
uf (a).

Exercise 6.4. Show that an b-flow can be found at Step 1 by solving a maxi-
mum s-t flow problem in the digraph where vertices s and t have been added.
4
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Theorem 6.10. The minimum mean cycle-canceling algorithm find a min-
imum cost b-flow in O(m3n2 log(n)).

6.3 Linear programming for flows

The maximum flow problem can be solved using the following linear program

max
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa (6.2a)

s.t.
∑

a∈δ−(v)

xa =
∑

a∈δ+(v)

xa, ∀v ∈ V \{s, t} (6.2b)

xa ≤ ua ∀a ∈ A (6.2c)
xa ≥ 0 ∀a ∈ A (6.2d)

Exercise 6.5. Give an LP for the minimum cost flow problem. 4
A practical consequence, using a LP solver to deal with a flow problem

is a good idea, both in terms of coding time and computing time.

Proposition 6.11. The flow matrix is totally unimodular.

Proof. See Corollary 9.10 for total unimodularity.

Proposition 6.12. The minimum capacity s-t cut problem is the Lagrangian
dual of the maximum s-t flow.

We prove Proposition 6.12 as an example of the dualization of a linear
program (Skill 8.1), which is a skill that must be mastered at the end of the
course.

Proof of Proposition 6.12. It will be handy to consider the following equiv-
alent version of (6.2).

max q (6.3a)

s.t.
∑

a∈δ+(s)

xa −
∑

a∈δ−(s)

xa = q (6.3b)

∑
a∈δ+(t)

xa −
∑

a∈δ−(t)

xa = −q (6.3c)

∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0, ∀v ∈ V \{s, t} (6.3d)

xa ≤ ua ∀a ∈ A (6.3e)
xa ≥ 0 ∀a ∈ A (6.3f)
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Introducing dual variables yv ∈ R for Equations (6.3b) to (6.3d) and za ≥ 0
for Equation 6.3e, we get the Lagrangian

L(x,y, z) =
∑

a∈δ+(s)

xa +
∑
a∈A

za(ua − xa) +
∑
v

yv

 ∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa


+ ys

 ∑
a∈δ+(s)

xa −
∑

a∈δ−(s)

xa − q

+ yt

 ∑
a∈δ+(t)

xa −
∑

a∈δ−(t)

xa + q


=
∑
a∈A

zaua +
∑

a=(v,w)∈A

xa(yv − yw − za) + q(1 + yt − ys)

which gives the dual

min
∑
a

uaza (6.4a)

s.t. za ≥ yv − yw ∀a = (v, w) ∈ A (6.4b)
ys − yt ≥ 1 (6.4c)
za ≥ 0 ∀a ∈ A. (6.4d)

whose matrix is totally unimodular, and whose integer results are naturally
interpreted as the minimum capacity cut problem.

We conclude with two results that play a role in Chapter 11. Let 1P
(resp. 1C) denote the indicator function of a path P (resp. a cycle C). Prov-
ing

Proposition 6.13. Any s-t flow f can be decomposed as∑
C∈C

µC1C +
∑
P∈P

λP1P

and its value is val(f) =
∑

P∈P λP , and a circulation g as∑
C∈C

µC1C

where C denotes the set of cycles in G and P the set of s-t paths in P .

Corollary 6.14. The rays of the s-t flow matrix correspond to cycles, the
extreme points to s-t paths.

Exercise 6.6. (not trivial but doable) Prove Proposition 6.13 and Corol-
lary 6.14. 4
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Chapter 7

Matchings

Teaching remark: This chapter is pretty short, and should remain short, to
save time for exercises on flows. When teaching:
- not needed to introduce the Hungarian algorithm

- Only state the problem, and give as an exercise to give the flow formulations.

- Prove Theorem 7.8. Just tell the story for the remaining on stable marriages
(why not slides)

Definition 7.1. A graph G = (V,E) is bipartite if and only if V can be
partitioned into two subset (U,W ) such that each edge in E is one extremity
in U and the other in W .

Proposition 7.2. Let G = (V,E) be a graph. The following statements are
equivalent.
1. G is bipartite

2. G is 2-colorable

3. G has no odd cycle

Exercise 7.1. Prove Proposition 7.2. Deduce a polynomial algorithm deter-
mining if a graph is bipartite. 4

7.1 Maximum matching

We recall the maximum matching problem.

Maximum matching
Input. A graph G, an integer k
Question. Is there a matching with k edges in G?

Let G be a graph and M a matching in G. An elementary path P in G
is M -augmenting it has odd length, its ends and not covered by M , and its

47
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M E\M

Figure 7.1: An M -augmenting path.

edges are alternatively inside and outside M . Figure 7.1 illustrates such a
path. Let ∆ denote the symmetric difference: X∆Y = (X ∪ Y )\(X ∩ Y )..

Proposition 7.3. A matchingM in G is maximal if there is noM -augmenting
path.

Proof. Let M be a matching. Suppose that there exists an M -augmenting
path P with edges E(P ). Then M ′δE(P ) is a matching and |M ′| = |M +1|.

Conversely, suppose thatM ′ is a matching with |M ′| > M . Then vertices
in the graph (V,M ∪ M ′) have degree at most 2. Hence the connected
components of this graph are paths and cycles. And as |M ′| > M , there is a
connected component with more edges in M ′ than in M . Such a component
is an M -augmenting path.

Hence, maximum matching can be found in graphs whereM -augmenting
paths can be found. This is the case of bipartite graphs, as we will see in
the next section.

7.2 Maximum weight matching

We now consider the more general maximum weight matching, but restrict
ourselves to bipartite graphs.

Maximum weight matching
Input. A bipartite graph G, a weight function w : E → R.
Output. A matching M of maximum weight

∑
e∈M

w(e).

This problem typically models cases where machines must be affected to
tasks.

Let G be a bipartite graph with vertices sets U and W . Let H = (V ′, A)
be the digraph obtained by orienting all edges in E from U to W , adding
two vertices s and t, arcs (s, v) for each v in U and (v, t) for each v in W .
Finally, let capacity u(a) be equal to 1 in a in an orientation of an edge in
E, and to +∞ otherwise.

Proposition 7.4. There is a bijection between matchings in G and integer
flows under u in H.
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Hence, a maximum weight matching in a bipartite graph can be found
in polynomial time using a maximum flow algorithm.

Proposition 7.3 enables to propose a faster algorithm: the Hungarian
method . Given a matching M , let DM = (V,AM ) be the directed graph
obtained by orienting the edges in M from W to U , and the edges not in
M from U to W . And define `M (e) = w(e) if e ∈ M and `M (e) = −w(e) if
e /∈M . Let UM and WM denote the subsets of vertices of U and W that are
note covered by an edge in M . Algorithm 6 states the Hungarian algorithm.

Algorithm 6 Hungarian method
1: Input: a bipartite graph G with partition U,W , a weight function w :
E → R

2: Output: a maximum weight matching M .
3: M ← ∅
4: Find a UM -WM path P of minimum

∑
a∈P `M (a). Stop and return M

if no such path exist.
5: M ←M∆E(P ).

Remark that UM -WM paths correspond toM -augmenting paths. Hence,
by Proposition 7.3, Algorithm 6 ends after at most n/2 iterations and returns
a maximum cardinality matching. It remains to settle the question of how
to compute a shortest UM -WM path.

Proposition 7.5. M is a maximum weight matching among the matching
of cardinality |M |.

Corollary 7.6. There is no cycle C in DM with
∑

a∈C `M (a) < 0.

Proof. M∆C would be a matching of cardinality |M | and larger weight.

Given N ⊆ E, let w(N) =
∑

e∈M w(e).

Proof of Proposition 7.5. Suppose that M is a maximum weight matching
among the matching of cardinality |M |, let M ′ be the next value taken by
M , and let N be an arbitrary matching such that |N | > |M |. Then N∆M is
UM -WM path and w(N) = w(M)−`(N∆M) ≤ w(M)−`(M ′∆M) = w(M ′).
The result follows by iteration.

Using an appropriate implementation, we obtain the following result.

Proposition 7.7. The Hungarian algorithm solves the maximum weight
matching problem in bipartite graphs in O(n(m+ n log(n))).

Note that both flow and the Hungarian method enable to solve the max-
imum matching problem.
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7.3 b-matchings

Given a graph G = (V,E) and b : E → Z+, a b-matching is a subset M of
E such that degM (v) ≤ b(v) for all v in V . The flow approach presented in
the previous section naturally extends to the following problem.

Maximum weight matching
Input. A bipartite graph G = (V,Z), b : E → Z+, and w : E → R.
Output. A b-matching M of maximum weight

∑
e∈M

w(e).

Lower bounds on the degree can also be taken into account in the flow
approach.

7.4 Maximum and maximum weight matchings in
general graphs

7.5 Stable matchings

Consider a bipartite graph G = (V,E) with V partitioned into U,W . Sup-
pose for each vertex v, we have a total ordering �v on δ(v). A matching M
is stable if, for each (u, v) not in M , at least one of the following conditions
is satisfied
- there is e in δ(u) ∩M such that e ≺u (u, v),

- there is e in δ(v) ∩M such that e ≺v (v, u),
The traditional interpretation is the following one. Given a set U of men
and a set W of women, edge (u,w) belongs to E if both u and w could
potentially accept to marry the other one. Each woman w (resp. man u) has
an order of preference �w (resp. �u) on their potential partner. A matching
M is stable if there are no pair (u,w) such that both u and w would prefer
to be with the other one than with its partner in M .

Theorem 7.8. There exists a stable matching in a bipartite graph, and it
can be computed in O(|U ||W |

The proof and algorithm„ which we call the traditional matching algo-
rithm, can be told as a story.

Proof. Every morning, each man invites to dinner a woman who has never
refused on of his invitations – provided that such a woman exists. A woman
accepts the invitation from the man she prefers among the men who invited
her – provided that she would potentially accept marrying him. When-
ever a woman refuses an invitation from a man, he never invites her again.
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The algorithm continues until all invitations remains identical two successive
evenings.

Once a woman has dined with a man, she is guaranteed to dine the next
evening with a man she likes at least as much.

Indeed, she will dine with the same man the next evening unless she is
invited by a man she prefers. As a consequence, and as at least one dinner
changes every evening , the algorithms terminates after at most the number
of women times the number of men. Similarly

Once a man has dine with a woman, he will dine again only with her
or with women that he likes less. We obtain as a consequence that the
matching built is stable. Taking a man u, every woman v that u prefers to
the woman he is matched with is matched with a man she prefers to u.

There exists many stable matchings, and the algorithm used in the proof
compute a very specific one. We define the optimal partner (resp.pessimal
partner) of an individual the one he/she prefers (resp. likes the less) in all
the one he/she is matched to in stable matching.

Proposition 7.9. Two individuals cannot have the same optimal partner /
pessimal partner.

Proof. Suppose u and u′ have the same optimal partner w, and w.l.o.g. sup-
pose that w prefers u′ to u. Let M be a stable matching where u and w are
matched. By definition of the optimal partner, u′ is matched to a partner
he likes less that w, which contradicts the fact that M is stable.

A stable matching is male optimal if every man is matched to his optimal
partner and every woman to its pessimal partner.

Lemma 7.10. Any male optimal matching is female pessimal.

Proof. Let M be a male optimal stable matching, and M ′ a stable matching
where a woman w is matched to a man u′ she likes less that her partner u
in M . Then w prefers u to u′ in M ′, and as w is the optimal partner of u,
he prefers her to his partner in M ′, which contradicts the fact that M ′ is
stable.

Proposition 7.11. In the matching computed by the traditional matching
algorithm is male optimal and female pessimal.

Proof. It suffices to prove that it is male optimal. Consider for a contradic-
tion that u is the first man rejected by his optimal partner w, because she
prefers u′. By definition of u, man u′ has still not been rejected by his opti-
mal woman – each man considers women by decreasing order of preference.
By definition of the optimal partner, there exists a matchingM where u and
w are matched. But inM , man u′ is matched at best to his optimal partner,
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and hence to a woman he likes less than w. Hence, both u′ and w would
prefer being matched together, which leads to a contradiction.

Consider now the case of bipartite complete graphs, and suppose that
preferences�v are drawn randomly. Then Pittel [1989] show that the average
rank of an optimal partner is asymptotically in ln(n) while the average rank
of a pessimal partner is asymptotically in n

ln(n) . To sum things up, on a
matching market, daring is a good strategy.

The roommate problem generalizes the stable marriage problem to gen-
eral graphs. It enables to model matching problems where there is a single
population. The objective is find a stable matching in a general graph. Such
a matching is not guarantee to exist anymore. If preferences are dranw
randomly, Mertens [2005] conjectures that the probability of existence of a
stable matching decays algebraically in graphs with connectivity Θ(n) and
algebraically in grids.

Exercise 7.2. Prove that there is no stable matching in the following graph,
where list of preferences are given: 1 prefers 2 to 3 and 3 to 4.

1(2, 3, 4) 2 (3, 1, 4)

3 (1, 2, 4)4(1, 2, 3)

4

7.6 Further reading

Schrijver [2003, parts II and III] are devoted to matchings and their gener-
alizations.

Roth [2015] vulgarizes the applications of stable matchings to non-financial
markets.

7.7 Exercise

Exercise 7.3. What is the value of a maximum s-t flow in the following
graphs.
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Part II

Mixed Integer Linear
Programming
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Chapter 8

Lagrangian duality

This chapter recalls notions seen last year. Consider the optimization prob-
lem

min
x∈X

f(x) (8.1a)

s.t. gi(x) = 0, ∀i ∈ [p] (8.1b)
hj(x) ≤ 0, ∀j ∈ [q] (8.1c)

where f , gi, and hi are differentiable functions from Rn to R ∪ {+∞}, and
X is a subset of Rn.

8.1 Lagrangian duality

The Lagrangian associated to problem (8.1) is the mapping

L : Rn × Rp × Rq → R

(x,λ,µ) 7→ f(x) +
n∑
i=1

λigi(x) +
n∑
j=1

µjhj(x) (8.2)

where λ and µ are the vectors of Lagrangian multipliers. Let X be the set
of feasible solutions of (8.1). Remark that

sup
λ∈Rp,µ∈Rq

+

L(x,λ,µ) =

{
f(x) if x ∈ X
+∞ otherwise. (8.3)

Hence, Problem (8.1) can be reformulated as the following primal problem.

inf
x∈Rn

sup
λ∈Rp,µ∈Rq

+

L(x,λ,µ). (P)

The dual problem associated to (P) is

sup
λ∈Rp,µ∈Rq

+

inf
x∈X
L(x,λ,µ). (D)

57



58 CHAPTER 8. LAGRANGIAN DUALITY

Theorem 8.1. (weak duality)

val (D) ≤ val (P). (8.4)

The quantity val (P)− val (D) is called the duality gap.

Skill 8.1. Computing the dual

The direction of the inequalities can be arbitrarily chosen. The sign of the
dual variable µj must only be chosen in such a way that (8.3) remains true. If
possible possible, factorize L(x,λ,µ) in x and turn the optimization problem
infx∈X L(x,λ,µ) into a set of constraints ensuring that infx∈X L(x,λ,µ) >
−∞.

We are going to Lagrangian duality mainly in two contexts:
- linear programming in Chapter 9.

- Lagrangian relaxation in Chapter 11.
Remark that we have made no assumptions on the subset X of Rn. In

the context of linear programming duality, X is going to be the set of feasible
solutions of a mixed integer linear program.

8.2 KKT conditions

A:todo



Chapter 9

Linear Programming

Teaching remark:
- The reminder on duality can be done during the lecture on bipartite match-
ing (bipartite matching and vertex cover are pretty similar)

- For a quick reminder during a lecture:

- geometric interpretation of simplex
- simplex equivalent form of a LP
- If enough time, strong duality by linear programming
- just mentioning the algorithm

- Line and column generation might be done as an exercise.

A linear program is an optimization program of the form

min
x∈Rn

cTx

s.t. Ax ≤ b
(9.1)

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. The way a linear program is written
in (9.1) is called the general form or inequational form. Alternative forms
include the canonical form

min
x∈Rn

cTx

s.t. Ax ≤ b
x ≥ 0,

(9.2)

and the standard form or equational form

min
x∈Rn

cTx

s.t. Ax = b
x ≥ 0,

(9.3)

These three forms are equivalent, in the sense that a linear program written
in one of these forms can be written in any of the other ones.
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9.1 Simplex algorithm

Consider a linear programing in standard form 9.3. W.l.o.g. suppose that
A is of full rank , i.e., that its lines are linearly independent. Recall that
A ∈ Rm×n.

A base B is a subset of [n] of m column indices such that the corre-
sponding columns are linearly independent, i.e., such that the square matrix
AB = (a·j)j∈B is invertible. The basic solution of 9.3 associated to a base B
is

xb = A−1B b (9.4)

A solution is basic if it is the basic solution of a base B. It is basic feasible
if A−1B b ≥ 0.

Theorem 9.1. If the linear program 9.3 admits an optimal solution, then it
admits a basic feasible optimal solution.

Let B be a feasible base, N = [n]\B, AB and AN be the corresponding
submatrices, cB and cN the corresponding vectors of variables, and xB and
xN the corresponding vectors of variables. By multiplying the constraints
by A−1B and substituting in the objective, we obtain the following equivalent
of (9.3).

min
x∈Rn

(cTN − cTBA
−1
B AN )xN

s.t. xB = A−B1b−A−1B ANxN
x ≥ 0,

(9.5)

The vector rN = cTN − cTBA
−1
B AN is the vector of reduced costs asso-

ciated to B. The optimality criterion in the following proposition follows
immediately from (9.5).

Proposition 9.2. Let B be a feasible basis. If rN ≥ 0, then B is an optimal
basis. Otherwise, let k be such that rk < 0. Then one of then exactly one of
the following statement is true.
1. There exists a feasible basis B′ ⊆ B ∪ {k} with objective at least as small

as the one of B.

2. There is no feasible basis B′ ⊆ B ∪ {k} different from B, and the value
of (9.3) is −∞.

A pivot rule is a rule that unambiguously chooses a base in B′ in case 1.
The simplex algorithm solves the linear program as follows. Starting from a
feasible basis B, it uses the pivot rule to update B until rN ≥ 0 or we are
in case 2.

As in case 1, base B′ is at least as good as B, and not strictly better,
depending on the update rule chosen, the simplex algorithm might return to
a base already visited an cycle. The following theorem is not easy to prove,
and its proof is out of the scope of this lecture.
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Theorem 9.3. There exists a pivot rule such that the simplex algorithm does
not cycle.

As there is a finite number of basis, Theorem 9.3 guarantees that the simplex
algorithm converges after a finite number of iteration. Hence, if (9.3) admits
an optimal solution, then it admits an optimal basis B satisfying rN ≥ 0.

9.2 Interior point and ellipsoid algorithms

Just put the table with complexity, and add the separation theorem.

9.3 Duality

We recall the linear program in equational form

min
x∈Rn

cTx

s.t. Ax = b
x ≥ 0,

(P)

Its dual is the linear program

min
y∈Rm

bTy

s.t. ATy ≤ c
x ≥ 0,

(D)

Proposition 9.4. (D) is the Lagrangian dual of (P), and (P) is the La-
grangian dual of (D).

Exercise 9.1. Prove Proposition (9.4). 4

Theorem 9.5. (Strong duality theorem for linear programming) One and
only one of the following statements is true for (P) and (D)
1. Neither (P) nor (D) have a feasible solution.

2. (P) is unbounded and (D) has no feasible solution.

3. (D) us unbounded and (P) has no feasible solution.

4. Both (P) and (D) have a feasible solution and

val (P) = val (D)

The standard proof of Theorem (9.5) relies on Farkas Lemma. We give
an alternative proof based on simplex algorithm theory.
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Proof of case 4. Theorem 8.1 ensures val (P) ≥ val (D). We prove the equal-
ity by exhibiting solutions of the two problems with the same value. Let B
be an optimal basis of the primal returned by the simplex algorithm, and
define xB = A−1B b and yB = (A−1B )TcB.

We have

ATyB =

(
ATB
ATN

)
(A−1B )TcB =

(
cB

ATN (A−1B )TcB

)
≤
(
cB
cN

)
The last inequality resulting from the fact that, as B is the optimal basis
produced by the simplex, reduced costs are positive: rN = cTN−cTBA

−1
B AN ≥

0. Hence yB is a feasible solution of (D), and

val (P) ≤ cTxB = cTBA
−1
B b = byB ≤ val (D),

which concludes the proof.

9.4 Total unimodularity

A polyhedron P is integral if P = conv(P ∩ Zn), where conv(·) denotes the
convex hull.

Proposition 9.6. Let P be a polyhedron. The following statements are
equivalent.
1. P is integral.

2. max{cTx : x ∈ P} is attained by a vector x∗ ∈ Rn for any c such that
the linear program is finite.

3. max{cTx : x ∈ P} is integer for each c in Zn such that the maximum is
finite.

A matrix A in Zm×n is totally unimodular the determinant of any of its
square submatrix is in {−1, 0, 1}.
Theorem 9.7. (Hoffman and Kruskal, 1956) An integral matrix is totally
unimodular if and only if the polyhedron {x : Ax ≤ bx ≥ 0} is integral for
each integral vector b.

Exercise 9.2. Prove the following corollary. 4
Corollary 9.8. An integral matrix is totally unimodular if and only if, for
all integral vectors b and c such that we are in Case 4 of Theorem 9.5, then
both the primal and the dual optimal are attained by integral vectors.

The following sufficient condition for total unimodularity is useful in
practice.

Proposition 9.9. Let A be a matrix with coefficients in {−1, 0, 1}. If A
contains at most one 1 and one −1 per column, then A is totally unimodular.

Corollary 9.10. The incidence matrix of a directed graph is totally unimod-
ular.
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9.5 Line and column generation

Conclude with the separation theorem. Starting from the separation theorem

9.6 Further readings

We recommend the excellent textbook on linear programming by Matousek
and Gärtner [2007].
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Chapter 10

Integer Programming

A mixed integer linear program is an optimization problem of the form

min cx,
s.t. Ax ≤ b,

x ∈ Zp × Rn−p.
(MILP)

where A is a matrix in Rm×n, and c and b respectively belong to Rn and
Rm. The linear relaxation of Problem MILP is the linear program

min cx,
s.t. Ax ≤ b,

x ∈ Rn.
(REL)

Recall that the value of a problem P is denoted by v(P) and equal to +∞ if
P admits no solution. We have

val (REL) ≤ val (MILP). (10.1)

Exercise 10.1. Prove Equation (10.1). 4

Solution.
Sol (MILP) ⊆ Sol (REL).

10.1 Branch and bound algorithm

General method

Solving a combinatorial optimization problem

min
x∈X

f(x) (10.2)
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where X is finite by explicit enumeration becomes impractical as soon as
the size of X increases. Branch-and-bound is a general method to solve
combinatorial optimization problems by implicit enumeration. Suppose that
Y ⊆ 2X is a collection of parts of X such that X ∈ Y, there exists an optimal
solution x of (10.2) such that {x} ∈ Y, that we have a lower bound function
λ : Y → R such that

λ(Y ) ≤ min
x∈Y

f(x).

We also suppose to have a branching function

b : Y → Y × Y
Y 7→ Y1 × Y2

s.t.

∣∣∣∣ Y1 ∪ Y2 = Y,
Y1 ∩ Y2 = ∅

Typically, we have b(Yi) ≥ b(Y ). Algorithm 7 states the branch-and-bound
algorithm.

Algorithm 7 Branch-and-bound algorithm (general)
1: Input: an instance of (10.2), λ and b;
2: Output: an optimal solution x∗ or ∅ if no optimal solution exist;
3: L ← {X}, x∗ ← ∅, u← +∞;
4: while L 6= ∅ do
5: extract Y from L; node selection
6: if Y = {y} and f(y) < u then
7: u← f(y) and x∗ ← y;
8: else if λ(Y ) < u then
9: L ← L ∪ {Y1, Y2} where (Y1, Y2) = b(Y ); branching

10: end if
11: end while
12: return: x∗

It is easy to show that Algorithm 7 admits the following invariants. First,
if there is an optimal solution and x = ∅, then

⋃
Y ∈Y contains an optimal

solution. Second, if Y and Y ′ are two elements of Y, then Y ∩ Y ′ = ∅.
And third, u is an upper bound on the value of an optimal solution. These
invariants enable to deduce that a part Y ∈ Y is considered at most once by
the algorithm, and to deduce the following proposition.

Proposition 10.1. The branch-and-bound algorithm converges after a finite
number of iterations, and at the end of the algorithm, x∗ = ∅ if X = ∅, and
x∗ is an optimal solution of (10.2).

At any time during the algorithm, the quantity

` = min
Y ∈Y

λ(Y ) (10.3)

provides a lower bound on the value of the optimal solution. It can therefore
be used to assess the quality of the current solution x, and may be used to
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decide to stop the algorithm before convergence because the current solution
is proved to be of sufficient quality.

Remark that an execution of a branch-and-bound algorithm defines a
rooted tree as follows. The nodes are the elements of Y considered by the
algorithm – vertices of the tree are traditionally called node in that context.
X is the root node. And the children of a node Y are the elements of b(Y ).
A node Y is pruned when it is discarded because λ(Y ) > 0.

Several decisions must be taken along a branch-and bound algorithm.
- Node selection: which node of L must be deal with?

- Branching strategy selection: choice of b.
Depending of the goal of the person solving the problem, different strategies
can be chosen. If the goal is to find quickly a good quality solution but not
to prove the optimality of the solution returned, a depth-first-search, which
selects first node that are deep in the tree, is a good solution. But it is
not a good solution if the goal is to find an optimal solution and prove its
optimality. Indeed, in that case, a breadth-first-search tends to give better
results.

Mixed Integer Linear Programs

Solving mixed integer programs MILP is one of the main applications of
branch and bound. Recall that we consider solutions x ∈ Zp × Rn−p. We
denote by x[p] the integer variables of x. For convenience, we describe it on
the mixed integer linear program In that case, the elements of Y are linear
programs, and the branching procedure splits the solution space among the
solutions such that xi ≤ k and those such that xi ≥ k + 1 for some integer
variable xi and some integer k. We denote by LP0 the linear relaxation of
(MILP). Algorithm 8 details the branch-and-bound algorithm for MILPs.

A:Add here a theorem saying that branch and bound converges for
MILP with infinitely many solutions and rational matrix, as a corollary
of Meyer theorem. Say also that it is trivially true if the polyhedra
is bounded, as there are finite solutions. But not true if the polyhedra
is unbounded

Practical efficiency

The practical efficiency of a branch-and-bound algorithm depends on the
quality of the lower bounds used. If the difference between minx∈Y (x) and
λ(Y ) is small, then nodes can be pruned efficiently, and the number of nodes
enumerated remains small. When it is not the case, the branch-and-bound
algorithm may be slow.

Several alternative formulations are generally possible when modeling a
combinatorial optimization problem as a (MILP). Given two alternative for-
mulations of the same problem, one formulation is better than the other if
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Algorithm 8 Branch-and-bound algorithm (MILP)
1: Input: an instance of (MILP);
2: Output: an optimal solution x∗ or ∅ if no optimal solution exist;
3: L ← {LP0}, x∗ ← ∅, u← +∞;
4: while L 6= ∅ do
5: extract LP from L; node selection
6: solve LP;
7: if LP has feasible solutions then
8: let xc denote an optimal solution of LP;
9: if xc[p] ∈ Zp and val(LP) < u then

10: u← val(LP) and x∗ ← xc;
11: else if val(LP) < u then
12: let k ∈ [p] be such that xk /∈ Z
13: L ← L ∪ {LP1,LP2} where LP1 and LP2 are respectively ob-

tained by adding constraints xk ≤ bxckc and xk ≥ dxcke to LP;
branching

14: end if
15: end if
16: end while
17: return: x∗

the polyhedron of its linear relaxation is included in the polyhedron of the
other one – there exists a surjection from the solutions of the linear relax-
ation of the first to the solutions of the second that preserves solution costs.
The two next sections introduce good quality formulations and methods to
strengthen the quality of the formulation.

10.2 Perfect formulations

A MILP
min cx,
s.t. Ax ≤ b,

x ∈ Zp × Rn−p.

is a perfect formulation is the polyhedron of its linear relaxation is the convex
hull of its integer solutions, that is{

x ∈ Zn : Ax ≤ b
}

= conv
{
Zp × Rn−p : Ax ≤ b

}
.

The advantage of perfect formulations comes from the following proposition.

Proposition 10.2. Any basic optimal solution of the linear relaxation is an
optimal solution of the MILP
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In other words, it suffices to solve the linear relaxation of a perfect for-
mulation to obtain its optimal solution. Hence, a perfect formulation can
be solved in polynomial time in the size of the formulation. Remark that
the size of such a formulation is not necessarily polynomial in the size of the
problem it models. Indeed, it suffices to take the convex hull of the integer
solution of an arbitrary formulation of a problem to obtain a perfect formu-
lation of this problem. However, the number of faces in the convex hull is
typically exponential in the size of the initial formulation.

For purely integer linear program, that is p = n, perfect formulations
are characterized by totally unimodular matrices, which have been intro-
duced in Section 9.4. The following problems are important combinatorial
optimization problems that admit a perfect formulations:
- spanning trees (Chapter 4).

- paths and flows (Chapters 5 and 6).

- bipartite matchings (Chapter 7) and general matchings (Section 7.4 ).
These perfect formulation naturally arise as subproblems in decomposition
methods (Chapter 11).

10.3 Valid inequalities and Branch and Cut

A valid inequality or valid cut for a MILP

min cx,
s.t. Ax ≤ b,

x ∈ Zp × Rn−p.

is an inequality
aTx ≤ b

satisfied by any integer feasible solution x ∈ Zp × Rn−p but not by all the
feasible solution of the linear relaxation. Valid inequalities typically enable
to strengthen the formulation a MILP, that is, to improve the quality of its
linear relaxation.

The branch-and-cut algorithm is an improvement of the branch-and-
bound algorithm that uses valid inequalities to strengthen the formulation.
It is extremely efficient and it is the kind of algorithm in use in state of the
art general purpose MILP solvers. Branch-and-cut algorithm is obtained
from branch-and-bound by adding the step
- decide whether to strengthen the formulation of LP, and strengthen it if
decided;

between steps 6 and 7 of Algorithm 8. LP is strengthened as follows. A
family F of valid inequalities f = (af , bf ) is considered. Fixing the current
solution x, the most violated inequality f∗ in F is identified by solving the
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separation problem
min
f∈F

bf − aTf xf .

If bf∗ − aTf∗xf∗ < 0, then f∗ is added to LP. The current solution x does
not satisfy f , and hence adding f enables to strengthen LP.

In practice, solvers use families of inequality F of exponential size but
whose seperation problem is easily solved. Indeed, if there is a small family
of valid inequalities that strengthen a lot the formulation, all the inequalities
in F can be added from the beginning. But on difficult NP -complete prob-
lems, small families are generally not sufficient to improve a lot the quality
of the LP. Families F of exponential size generally enable to obtain much
stronger relaxations, but their size prohibit the addition of the complete
families to LP. Solving the separation problem enables to add only valid
inequalities in F that enable to strengthen LP the most. Hence, if the sep-
aration problem is well solved, branch-and-cut algorithm enables to benefit
from large families of valid inequalities at small computational cost.

10.4 Modeling tricks

Teaching remark: teach as an exercise

10.4.1 Logic constraints

10.4.2 McCormick inequalities

10.5 Meyer’s theorem

Theorem 9.5 ensures that a feasible and bounded linear program always
admits an optimal solution. This is not the case of general mixed integer
linear program, as shown in Exercise 10.2, and comes from the fact that the
convex hull of the integer points Q = conv

(
{x ∈ Zp ×Rn−p : Ax ≤ b}

)
in a

polyhedron P = {x ∈ Rn : Ax ≤ b} is not necessarily a polyhedron. Simple
sufficient conditions are:
- If {x ∈ Zp × Rn−p : Ax ≤ b} is finite, then Q is a polytope

- If P = {x ∈ Rn : Ax ≤ b} is a polytope, then Q is a polytope.
The following theorem provides a much more general results.

Theorem 10.3. (Meyer) Let A be a rational matrix and b be a rational
vector. Then Q = conv

(
{x ∈ Zp × Rn−p : Ax ≤ b}

)
is a polyhedron and

there exists a rational matrix A′ and a rational vector b′ such that

Q = {x ∈ Rn : A′x ≤ b′}
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10.6 Further readings

10.7 Exercises

Exercise 10.2. We recall that
√

3 is not rational. Consider the integer pro-
gram

min
√

3x2 − x1
s.t.1 ≤ x1 ≤

√
3x2

x1, x2 ∈ Z+

- Construct a sequence (xk)k of feasible solutions such that
√

3xk2−xk1 −→
k→∞

0.

- Deduce that the integer program has no optimal solution.

- Deduce that the convex hull of {x1, x2 ∈ Z+ : 1 ≤ x1 ≤
√

3x2} is not a
polyhedron.

4
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Chapter 11

Relaxations and
decompositions

Modern MILP solvers can tackle formulations with up to hundreds of thou-
sands of variables and constraints, provided their matrix are sparse and they
have a good linear relaxation. An matrix is sparse if it has few non-zero
coefficients. An MILP is sparse if its constraint matrix is sparse. For large
but sparse instances that cannot be dealt with using present day solvers, de-
composition and relaxation techniques provide powerful alternatives. They
exploit the specific structure of the instance to ease the resolution.

The two first techniques we introduce are Lagrangian-Relaxation and
Dantzig-Wolfe decomposition. Both apply to MILP whose constraint matrix
has a block-diagonal structure like the one illustrated on Figure 11.1. The
lines, i.e. the constraints, of such matrices can be partitioned into
- Linking constraints, represented in blue on Figure 11.1.

- Blocks of constraints B1, . . . , Bk, such that, if i 6= j, the variables that
intervene in constraints of block Bi are different from those that inter-
vene in the constraints of block Bj . Such blocks are illustrate in red on
Figure 11.1.
The linking constraints are “complicating constraints”. If these con-

Figure 11.1: Block diagonal decomposition of a MILP
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a/ b/

Figure 11.2: Turning linking variables into linking constraints

straints were not there, we would have several smaller and simpler MILP
problems, one for each block. Lagrangian relaxation and DW decomposition
can also apply to problem with linking constraints, as the one illustrated
on Figure 11.2.a: several block of constraints, illustrated in red, would be
independent if they were not coupled by some linking variables, illustrated
in purple. An equivalent problem with linking constraints is naturally ob-
tained: it suffices to introduce a copy of the linking variable for each block,
illustrated in cyan on Figure 11.2.b, and to add linking constraints enforcing
the equality of the copies, illustrated in blue on the figure.

Dantzig-Wolfe decomposition and Lagrangian relaxation exploit the block
diagonal structure to solve more efficiently the initial problem in two ways.
1. They give a tractable relaxation of the problem that is better than the

linear relaxation – both give the same bound.

2. Pricing subproblems corresponding to each blocks, which are identical for
the two methodologies, can be solved with ad hoc solvers.

If the bound is not improves, or if the pricing subproblems cannot be solved
efficiently these approaches are probably not good options. The relative ad-
vantages of both approaches are the following ones. Lagrangian relaxation
is easy to implement, and does not require an LP solver. It is a good option
when the objective is to compute one bound or to design a matheuristic. It is
less appropriate to solve the problem to optimality, or when finding a feasible
solution of the initial problem is difficult. Dantzig-Wolfe decomposition ma-
chinery is more involved, and when implemented, it requires more memory
than the Lagrangian-relaxation approach. However, it has the advantage of
being purely combinatorial when Lagrangian relaxation is numerical, and is
better adapted when finding a feasible solution is difficult. Using Branch-
and-Price, it enables to prove optimality.

Benders decomposition applies directly to the block diagonal structure
with linking constraints of Figure 11.2.a., where in addition the block vari-
ables must be continuous. The linking variables can be integer. Benders
decomposition enables to solve a problem only in the initial variable, solv-
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ing each pricing subproblem separately to generate cuts. Contrary to the
previous approaches, its objective is not to improve the lower bound used
to cut. It is only to reduce the number of variables. If the initial problem
is a linear program, Benders decomposition can be seen as a dual version
of Dantzig-Wolfe decomposition. However, the analogy stops when mixed
integer variables are introduced, and these decompositions are relevant on
very different kinds of problem.

Lagrangian relaxation and Dantzig-Wolfe decomposition are more of suc-
cess stories than Benders decomposition, as we will see in Section 11.3. This
comes probably from the fact that, first, integer variables can be considered
in the subproblems, and second, they provide an improved bound. How-
ever, Benders decomposition has one very important application, where it is
probably the best option: stochastic optimization problems.

11.1 Lagrangian relaxation

11.1.1 Definition and interest

Consider the “Primal” Mixed Integer Linear Program, that we write w.l.o.g. in
its equational form.

zI = min cx (11.1a)
s.t. A1x = b1 (11.1b)

A2x = b2 (11.1c)

x ∈ Zp+ × Rn−p+ (11.1d)

where we have partitioned the rows of the constraints matrixA into (A1, B1)
t,

and z denotes the value of the program. Typically, A1x = b1 contains “com-
plicating constraints”, and solving (11.1) without these constraints would be
much easier. On Figure 11.1, constraints A1x = b1 corresponds to the blue
block, while A2x = b2 corresponds to the red blocks.

The Lagrangian relaxation is an application of the Lagrangian duality
introduced in Section 8.1. It is obtained by taking the Lagrangian dual (D)
obtained by dualizing Constraints (11.1c), and using

X =
{
x ∈ Zp+ × Rn−p+ : A2x = b2

}
.

Denoting λ the vector of duals in Rq corresponding to the q constraints
in (11.1c),

zLR(λ) = min
x∈X

cx+ λT (A1x− b1) (11.2)

the dual is
sup
λ∈Rq

zLR(λ). (11.3)

Theorem 8.1 gives the following proposition.

Proposition 11.1. zLR(λ) ≤ zLD ≤ zI for all λ ∈ Rq.
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Figure 11.3: Value of the primal zI and of the Lagrangian relaxation zLD

11.1.2 Quality of the bound

The following results characterizes the bound zLD. Recall that conv(X) is
the convex hull of X.

Theorem 11.2. (Geoffrion) If X is finite or A2 and b2 have rational coef-
ficients, then

zLD = min
{
cx : x ∈ conv(X), A1x = b1

}
.

An immediate corollary of Theorem 11.2 is that the Lagrangian relax-
ation zLR provides a better lower bound on the value of the value zI of the
integer program (11.1) than its linear relaxation zlin

zlin ≤ zLR ≤ zI.

Figure 11.3 illustrates this fact and Theorem 11.2. The red polyhedron
in plain line is {x : A2x = b2}. The dashed red polyhedron is the polyhe-
dron conv(X), i.e., the convex hull of the integer solutions in the plain red
polyhedron. The quality of the Lagrangian relaxation comes from the fact
that the dashed red polyhedron is contained in and strictly smaller than the
plain red one.

The main interest of the Lagrangian relaxation comes from this improved
lower bound. Indeed, using zLR instead of zlin in a branch-and-bound algo-
rithm enable to cut more nodes, and hence to explore a smaller part of the
branch-and-bound tree.

Proof of Theorem 11.2. Meyer’s theorem ensures that conv(X) is a polyhe-
dron, there exists rational A′2 and b′2 such that

conv(X) = {x ∈ Rn : A′2x ≤ b′2}

and hence

min
x∈X

cx+ λT (A1x− b1) = min
x

{
cx+ λT (A1x− b1) : A′2x ≤ b′2

}
,



11.1. LAGRANGIAN RELAXATION 77

Figure 11.4: Linking constraints and variables

where the right hand side is a linear program. Applying twice linear pro-
gramming strong duality, we obtain

zLD = max
λ

zLR(λ)

= max
λ

min
x

{
cTx+ λT (A1x− b1) : A′2x ≤ b′2

}
= max

λ
−λTb1 + min

x

{
(cT + λTA1)x : A′2x ≤ b′2

}
= max

λ
−λTb1 + max

y

{
yTb′2 : y2 ≤ 0 and yT2A

′
2 = (cT + λTA1)

}
= max

λ,y

{
− λTb1 + yTb′2 : y2 ≤ 0 and yT2A

′
2 − λTA1 = cT

}
= min

x

{
cx : A1x = b1 and A′2x ≤ b2

}
= min

{
cx : x ∈ conv(X), A1x = b1

}
,

which gives the theorem.

Remark 11.1. Linking variables. Consider now the case with linking
constraints and linking variables illustrated in Figure 11.2.a. As explained
in the introduction and illustrated on Figure 11.2, copies of linking variables
are added in each block, and we relax the linking constraints enforcing the
equality of these copies. Suppose that the initial problem (without copies)
is composed of linking constraints

A1x ≤ b1,

and of blocks
Aix ≤ bi, for i ≥ 2,

where the Ai include the linking variables. Let

Xi = {x ∈ Zp × Rn−p : Aix ≤ bi}.

Then an extended version of Geoffrion theorem shows that, if A has rational
coefficients, the Lagrangian relaxation bound is equal to

min

{
cTx : A1x ≤ b1 and x ∈

⋂
i≥2

conv(Xi)

}
.
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linking variable case illustrated in Figure 11.2.a., which is dealt with
by adding copies of linking variables in each block, as illustrated in Fig-
ure 11.2.b., and relaxing the linking constraints enforcing the equality of
these copies. Suppose that each block is of the form

Aix ≤ bi, for i ≥ 2.

We suppose that the initial problem still has linking constraint

A1x ≤ b1.

Geoffrion theorem has a nice interpretation: the Lagrangian relaxation bound
is equal to the solution of 4

11.1.3 Computing the bound: subgradient algorithm

We now introduce an algorithm to compute zLD.

Proposition 11.3. λ 7→ zLR(λ) is concave.

Proof. It is an infimum of concave functions.

The following proposition is immediate.

Proposition 11.4. If X is finite, λ 7→ zLR(λ) is piecewise affine.

Given a concave function h on a part Y of Rq, a supergradient p of a
concave function h in λ is a vector p such that

h(µ)− h(λ) ≤ pT (µ− λ) for all µ in Y.

Proposition 11.5. Given λ, if x is an optimal solution of L(x,λ), then
A1x− b1 is a subgradient of λ 7→ zLR(λ) in λ.

Proof. Given such an x, we have

zLR(µ)− zLR(λ) ≤ L(x,µ)− L(x,µ) = (A1x− b1)T (µ− λ).

The subgradient algorithm can be described as follows. First, choose λ0

arbitrarily. At each step k, compute a subgradient pk of zLR(·) in λk using
Proposition 11.5. Then set

λk+1 = λk +
ρk
‖pk‖

pk,

where (ρk)k∈Z+ is a sequence in R+. The algorithm stops when pk = 0. If
(ρk)k∈Z+ is such that

lim
k→∞

ρk = 0 and
+∞∑
k=0

ρk =∞,

the concavity of zLR(·) ensures the convergence of λk to a supremum.
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Remark 11.2. Subgradients are the analogues of a supergradients for convex
functions. The name “subgradient algorithm” comes from the fact that the
theory has been developed for convex functions. 4

More advanced convex optimization algorithms such as bundle methods
can of course be used instead of the subgradient algorithm.

11.1.4 Branch and price

Branch-and-Bound algorithm can be adapted to use Lagrangian bound in-
stead of the linear relaxation bound. The resulting algorithm, Branch-an-
price, is discussed in more details in the context of Dantzig-Wolfe decompo-
sition.

11.1.5 Heuristic

Lagrangian heuristics are problem specific. However two general principles
can be used:
- rounding variables to restore integrality.

- approximate branching.

11.2 Dantzig Wolfe decomposition

11.2.1 Definition and link with Lagrangian relaxation

11.2.2 Branch and Price

11.2.3 Avoid branching when integrality gap is small

11.2.4 Matheuristics

11.3 Applications of Lagrangian relaxation and Dantzig-
Wolfe decomposition

11.3.1 Bin packing

Suppose that we have K bins of size W available, and n objects of size
{a1, . . . , an}. The bin-packing problem can be written

min
∑K

j=1 zj
s.t.

∑K
j=1 yji = 1 i = 1, . . . , n∑n
i=1 aiyji ≤Wzj j = 1, . . . ,K

yji, zi ∈ {0, 1} i = 1, . . . , n ; j = 1, . . . ,K

(11.4)

where zj = 1 if bin j is used, and yji = 1 if object i is in j. Dualizing the
constraint

∑K
j=1 yji = 1, we obtain
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zLR(λ) := min
K∑
j=1

zj +
n∑
i=1

λi(
K∑
j=1

yji − 1)

s.t.
n∑
i=1

aiyji ≤Wzj j = 1, . . . ,K

yji, zi ∈ {0, 1} i = 1, . . . , n ; j = 1, . . . ,K

which can be rewritten

zLR(λ) := −
n∑
i=1

λi +
K∑
j=1

Sj(λ)

where Sj := min
y,z∈{0,1}

{
z +

n∑
i=1

λiyi :
n∑
i=1

aiyi ≤Wz

}
. Computing zLR(λ)

therefore only requires to solve K knapsack problems.

We now show that the bound zLD is better than the bound
⌈∑n

i=1 ai
W

⌉
provided by the linear relaxation. Let α he the optimal solution of

max
1

W

n∑
i=1

aixi

s.t.

n∑
i=1

aixi ≤W

xi ∈ {0, 1}.

We have α ≤ 1. Let λ be defined by λi = − ai
αW .

Proposition 11.6. We have zLR(λ) = 1
αW

∑n
i=1 ai.

Proof. The definition of α ensures that Sj(λ) = 0 for all j in [K].

Using a1 = 3, a2 = 5, a3 = 5, and W = 7, we have
∑n

i=1 ai
W = 13/7, and

1
αW

∑n
i=1 ai = 13/5, hence the bound provided by the linear relaxation is 2

and the bound provided by the Lagrangian relaxation is 3.
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11.3.2 Facility location

11.3.3 Vehicle routing problems

11.3.4 Unit commitment

11.4 Benders decomposition

11.5 Exercises

11.5.1 Traveling salesman problem

Consider the traveling salesman problem on a complete graph G = (V,E)
with edge costs c(e) – See Chapter 17 for its definition.

1. Show that an optimal solution of the following MILP

Min
∑

e∈E c(e)xe
0 ≤ xe ≤ 1 e ∈ E
xe ∈ Z e ∈ E∑

e∈δ(v) xe = 2 v ∈ V∑
e∈δ(X) xe ≥ 2 X ⊆ V, X 6= ∅, V.

(11.5)

2. This problem must be solved by cut generation. What is the pricing
subproblem?

Solution. Min-cut.

Lagrangian enables to improve the linear relaxation bounds.
3. Show that we can rewrite the constraints

0 ≤ xe ≤ 1 e ∈ E
xe ∈ Z e ∈ E∑

e∈δ(v) xe = 2 v ∈ V∑
e∈E[X] xe ≤ |X| − 1 X ⊆ V, X 6= ∅, V.

4. We now give a special role to vertex 1. Show that the constraints of the
MILP can be rewritten

0 ≤ xe ≤ 1 e ∈ E
xe ∈ Z e ∈ E∑

e∈δ(1) xe = 2∑
e∈E[X] xe ≤ |X| − 1 X ⊆ {2, . . . , n}, X 6= ∅∑
e∈E xe = n∑
e∈δ(v) xe = 2 v ∈ {2, . . . , n}.
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Solution. If we consider X ⊆ V containing 1. Suppose that X contains a
cycle. As X\{1} contains at most |X|−2 edges, this cycle contains all the
vertices. Hence there is no edge of δ(X) in the solution, and contains |X|
edges. Hence

∑
e∈E xe = n implies that its complementary must contain

n − |X|. This contradicts the constraint that enforces that Xc contains
at most n− |X| − 1 edges.

5. Show that if we proceed to the Lagrangian relaxation of constraints∑
e∈δ(v) xe = 2 for v ∈ {2, . . . , n}, we obtain a subproblem that can

be solved in polynomial time.

Solution. Subproblem is a spanning tree problem.

6. What is the value of the Lagrangian relaxation?

Solution. It is the value of the linear relaxation. Indeed, the

0 ≤ xe ≤ 1 e ∈ E∑
e∈E[X] xe ≤ |X| − 1 X ⊆ {2, . . . , n}, X 6= ∅∑
e∈E\δ(1) xe = n− 2

is a perfect formulation of the spanning tree polytope (conforti p.154).
Geoffrion’s theorem enables to conclude.
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Chapter 12

Metaheuristics

In this chapter, we introduce generic heuristic algorithms to solve the prob-
lem

min
x∈X

c(x). (12.1)

12.1 Generalities on heuristics

12.1.1 What is a heuristic?

A heuristic for an optimization problem P is an algorithm φ which, given
and instance x of an optimization problem, returns a feasible solution in Sx
(if Sx is non-empty). It should be contrasted with an exact-algorithm, which
returns an optimal solution.

12.1.2 Evaluating a heuristic

When using a heuristic, there is no guarantee on the quality of the solution
returned . It is therefore crucial to evaluate experimentally the performance
of a heuristic before using it on an industrial problem. The experiments
must be of course designed in a way to produce reproducible results

To evaluate the quality of a heuristic, one must first define the goals that
should be met by the algorithm. The two main criteria are:
- the quality of the solution returned

- the time needed to return a good solution
but many other goals can be of interest.
- Ability to tackle large instances

- Easiness of implementation

- Robustness in terms of instances

- Flexibility and robustness to change in the modeling of the problem

- etc.
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On practical problems, we generally do not know the optimal solution of
the problem. A good lower bound on the value of the optimal solution is the
best way to evaluate the solution returned by the heuristics. Indeed, the gap
between the lower bound and the value returned by the algorithm is a good
evaluation of the problem. General strategies to obtain a good lower bound
are:
- solve to optimality an easier relaxed version of the problem, typically ob-
tained by relaxing some complicating constraints

- solve a dual problem, not necessarily to optimality.
Second one must build a library of testing instances, which should con-

tain a diverse panel of real-life and constructed instances. Heuristics gen-
erally depend on a wide range of “parameters”, and one must build a panel
of parameters, and launch the heuristic on each instance with each set of
parameter.

Ideally, state of the art algorithms for the problem studied must also be
tested on the same instances, and the results should be presented in a way
that enables to compare the performance of the different algorithm.

Remark 12.1. One flaw of the literature on heuristics is that similar algo-
rithms have been presented many times under different names using “nature
inspired metaphors”. When searching a good heuristic in the literature,
avoiding papers with shinny metaphorical name is generally a good idea.
And checking the quality of the experimental design evaluating the perfor-
mance of a heuristic is essential. 4

12.1.3 Families of heuristics

There are two kinds of heuristics:
- specific heuristics, or simple heuristics, which are problem dependent

- metaheuristics are general purpose algorithms that can be applied to a
wide range of optimization problems. They can be viewed as general
recipes to build good heuristics on some specific problems.
This lecture being general, we focus on metaheuristics.
A first way to classify heuristic is to distinguish constructive heuristics

from iterative heuristics.
- Constructive heuristics, also called greedy algorithms, start from an empty
solution, and complete at each step the solution with the “best” variable
given the current partial solution until a full solution is built. Construc-
tive heuristics are problem specific and generally ends in a “bad” local
minimum.

- Iterative heuristics starts from a (population of) feasible solution(s) and
transform it at each iteration using search operators.
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Most metaheuristics are iterative heuristics. However, using a simple
greedy algorithm is sometimes a good way to find the initial solution. In
this chapter, we focus on iterative metaheuristic.

The key objective when designing an iterative metaheuristic is too find
a way to find quickly a good solution without being “trapped” in a local
minimum. One therefore seeks a tradeoff between intensification and diver-
sification. The objective of intensification is to find quickly a good solution
near the current one, with the risk of ending in a local minimum. On the con-
trary, diversification aims at leaving a local minimum by moving in another
region of the solution space.

The three next sections introduce the main families of metaheuristics:
single solution neighborhood based metaheuristics, population based meta-
heuristics, and hybrid metaheuristics.

12.2 Neighborhood based meta-heuristics

12.2.1 Neighborhood and local search

A neighborhood N (x) of a solution x is a set of solutions “near” x. Typically,
it is obtained by modifying some variables in x.

Algorithm 9 Local search algorithm
Input: a feasible solution x0 ∈ X ;
Output: a feasible solution x ∈ X satisfying c(x) ≤ c(x0);
Initialize x← x0;
while min

x′∈N (x)
c(x′) < c(x) do

x← x′′ with x′′ ∈ argmin
x′∈N (x)

c(x′);

end while
return x;

The local search algorithm, stated in Algorithm 9, iteratively seeks in
the neighborhood N (x) of the current solution x a solution that improves x
until no such solution exists.

On standard neighborhood, the optimization problem minx′∈N (x) c(x
′) is

solved by enumerating all the solutions in N (x). The update policy of Step 5
is called best improvement : the complete neighborhood is tested in order to
find the best solution in the neighborhood. One alternative that is generally
faster and leads to solutions of comparable quality is first improvement , and
consists in stopping the enumeration of N (x) as soon as a solution x′ with
c(x′) < c(x) is found, and update with x← x′.

A solution x is a local minimum for neighborhood N if

c(x) = min
x′∈N (x)

c(x).
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Once a local search reaches a local minimum, the algorithm stops. Hence,
a local search typically ends up in a local minimum that is not a global
minimum.

12.2.2 From local search to metaheuristic: getting out off
local minima

The metaheuristics we now introduce are modifications of the local search
that allow the value c(x) of the current solution to increase in order to get
out of local minima.

Simulated annealing

Algorithm 10 Simulated annealing
Input: initial solution x0, initial temperature Tmax, parameter α
Output: a solution x ∈ X
Initialize: x← x0, xb ← x0, T ← Tmax

repeat
repeat
if c(x) < c(xb) then xb ← x
Generate a random neighbor x′ in N (x)
if c(x′) < c(x) then x← x′

else do x← x′ with probability e
f(x′)− f(x)

T

until Equilibrium condition satisfied
T ← αT temperature update

until Stopping criterion satisfied
return xb

Algorithm 10 is the simulated annealing algorithm. Its main idea is to
randomly search the neighborhood space, accept improving solutions, and
accept solution that increase the objection function with low probability.

Many parameters must be set:
- The initial temperature Tmax is typically chosen in such a way that the
probability of acceptance at the beginning is between 40% and 50%.

- Parameter α is typically chosen between 0 and 0.99. Alternative temper-
ature updates rules can be used. Typically, T slowly decreases to 0.

- Typical choices for the equilibrium condition is to update temperature after
y · |N(s)| iterations. The larger y, the better the solution and the higher
the computational cost. Another alternative is too decrease the objective
when objectives improves, and increase it after a number of iterations
without accepting the move.
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- The stopping criterion is generally that a given number of iterations have
been performed, or that a small temperature has been reached.
It is generally a good idea to run a local search after a simulated annealing

to guarantee that the solution obtained is a local minimum.

Taboo

One characteristic of the previous methods is that they are memory-less:
only the current state is used in the search. Taboo search, on the contrary,
uses memory to diversify, and is stated in Algorithm 11.

Algorithm 11 Taboo search
Input: feasible solution x0 ∈ S
Initialize: T ← ∅, x← x0, xb ← x0
repeat
if min

x′∈N (x)
c(x′) < c(xb) then aspiration criterion

x← min
x′∈N (x)

c(x);

xb ← x;
else x← argmin

x′∈N (x′)\T
c(x′); non-taboo move

Update T ;
until stopping criterion holds
return xb

The main idea of taboo search is to maintain a list T of taboo solutions
that correspond to the last solutions visited. The objective is to force diver-
sification by forbidding solutions previously tested. Practically, T must not
be implemented as the list of the n previous solutions visited , but as the set of
solutions satisfying certain conditions. Typically, when solutions are vectors
and neighborhood consists in changing some components of the vector, the
taboo lists forbids to change again the components modified during the n
previous moves. The aspiration criterion allows to accept taboo solutions
that improves the best solution known. Other aspiration criterion can be
used. Of course, it is not necessary to solve the minimization problems to
optimality, and some randomness can be introduced.

The taboo list T is typically a “short term memory”: it contains infor-
mation on the last solutions visited. Advanced taboo techniques also use.
- A medium term memory for intensification. This medium term mem-
ory contains statistics of attributed of the best solution founds during the
previous part of the search (on a longer term than the taboo list). If
an intensification criterion holds, search is intensified around the current
solution using a local search where solutions are generated randomly us-
ing a distribution that bias the search toward solutions having the same
attributes as the best solutions in the medium term memory.
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- A long term memory for diversification. This memory stores statistics on
the attributes of all the solutions considered during the search. When a
diversification criterion is met, this memory is used to move the current
solution to a region of the search space that has not yet been explored.

12.2.3 Practical aspects

A metaheuristic will be efficient if it can explore efficiently the solution space.
The two elements that are critical for the performance are
- the quality of the neighborhoods: a solution may be a local minimum for
one neighborhood but not for another.

- the “speed” at which the algorithm moves from one solution to another,
which requires a careful implementation.
Section 12.2.4 details how to build neighborhoods of good quality. We

now elaborate on how to make a heuristics that moves fast, and how to
handle constraints.

Moving fast

Two aspects are critical to build a heuristic that moves fast. We illustrate
them on the facility location problem introduced on page 16.

First, the encoding of the solution must
- avoid redundancy: there should not be several encoded solutions that cor-
respond to the same solution (avoid symmetry if possible)

- be compact

- allow fast computations
Computing in a preprocessing quantities that will be needed many times is
a good idea.

Typically, on the facility location problem, a solution is described by the
set of facilities opened. It is not necessary to store the client-facility associa-
tion, as, given a set of opened facilities, it is immediate to find which facility
will serve which client. This computation will be faster if, in a preprocessing,
the ordered list of nearest facilities have been computed for each client.

Second, the evaluation of a solution must be incremental. Computing
from scratch the cost of a solution takes time. Computing the costs of a
neighbor x′ of the current solution x is generally much faster. For instance,
a typical neighborhood for the facility location problem consists in opening
a facility. When such a move is done, only the costs the clients that are near
the new facility must be updated.

Given the speed of the current computers, a heuristic is considered “fast”
if it moves one million times every second. This is generally achievable for
academic problems that are relatively “pure”. On industrial ones, it might
be one or two order of magnitude slower.



12.2. NEIGHBORHOOD BASED META-HEURISTICS 91

Handling constraints

Several strategies are used to handle constraints. The most common ones
are the following.
- reject strategies consists in using only feasible solutions as the current
solution

- penalizing strategies include a penalty for violating the constraint in the
objective function. Typically, the penalty is a constant times a distance
to feasibility. Like temperature in the simulated annealing, these penalties
can be static, dynamic, or adaptive.

- repairing strategies that rebuild a feasible solution from an infeasible can
be useful.

12.2.4 Very large and variable neighborhood search

Large neighborhoods have a clear advantage over using small neighborhoods:
a local minimum for a small neighborhood may not be a local minimum for
a large neighborhood. And a clear drawback: enumerating the solution
of a large neighborhood may take time. This section details techniques to
improve metaheuristics using very large neighborhoods.

Using mixed integer programming to build large neighborhood

Metaheuristics need to optimize over neighborhoods N (x). For small neigh-
borhoods, this can be done by complete enumeration. For large neighbor-
hoods, this requires a practically efficient algorithm to optimize over the
neighborhood. Exact algorithms such as dynamic programming, shortest
path problems, flows, linear programming or integer programming can typ-
ically be used, as well as practically efficient heuristics to search the neigh-
borhood.

A typical way of building large neighborhoods is the following. If there
exists a MIP formulation that is non-tractable for large instances of interest,
but practically well solved for small instances, a typical strategy to build a
neighborhood is to fix a given proportion of the solution, and solve the small
resulting instance using a MIP. For instance, for a time-tabling problem on
a horizon of one month, using a small MIPs on rolling horizons of three days
is generally a good idea to build a good neighborhood.

Variable neighborhood search

Using many neighborhoods along a metaheuristic is generally a good idea.
At the beginning, the current solution is easy to improve, and small neigh-
borhoods generally enable to improve it faster than large ones. At the end
of the algorithm, the current solution is generally a local minimum for small
neighborhoods, and it is therefore better to use large neighborhoods.
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A technique that performs generally well is to select randomly the neigh-
borhood using a distribution that bias the selection toward the neighbor-
hoods that were the “most efficient” on a medium term (e.g. last 1000 itera-
tions).

Machine learning tricks

Use machine learning to identify the properties of good solutions.

12.3 Population based heuristics

Genetic or evolutionary and ant colonies algorithms are the most used popu-
lation based heuristics. Algorithm 12 introduces a prototype of evolutionary
algorithm.

Algorithm 12 Evolutionary algorithms
Initialize with a population P of feasible solutions
repeat
Generate a new population P ′ from P
Update P by selecting a population of desired size in P ∪ P ′

until Stopping criterion satisfied
return best solution(s) found;

Population generation in evolutionary (or genetic) algorithms rely on
cross-over operators g : X × X → X , which given two solutions x1 and x2
generate a third one g(x1, x2) by combining these two solutions. For instance,
on the facility location problem, one can partition the set of facilities into
Fa and Fb, and building g(x1, x2) by opening the opened facilities of x1 in
Fa and the opened facilities of x2 in Fb? A new population P ′ is generally
produced by randomly selecting two elements x1 and X2 in P and adding
g(x1, x2) to P . This operation is repeated until P ′ has reached the desired
size.

Typically, the P solutions of minimum cost are selected from P ∪ P ′ in
the population selection step.

12.4 Hybrid heuristics

12.4.1 Matheuristics
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