Introduction to Operations Research

CERMICS, ENPC

Axel Parmentier
September 26, 2018

Traveling salesman problem

Mister Supersales must plan his tour

Traveling salesman problem

Mister supersale has planned his tour

Traveling salesman problem

Is there an optimal solution?

Traveling salesman problem

Is there an optimal solution?
Yes: finite set of solution
Can we enumerate all the solutions?

Is there an optimal solution?
Yes: finite set of solution
Can we enumerate all the solutions?
With 25 cities, we have 24 ! $=24 \times 23 \times 22 \times \cdots \times 2 \times 1$ possibilities, that is, around 6.204×10^{25} possibilities.

Using paper and pencil, testing 1 possibility per second, requires around 1.976×10^{16} years.

Testing 1 million possibilities per second with a computer, requires 19 billion years.

1. What is Operations Research

2. Syllabus
3. Graphs
4. Complexity

Operations Research

The traveling salesman problem is one of the most famous Operations Research problem.

Operations Research (OR): mathematical discipline that deals with the optimal allocation of resources (typically in firms).

Operations Research

The traveling salesman problem is one of the most famous Operations Research problem.

Operations Research (OR): mathematical discipline that deals with the optimal allocation of resources (typically in firms).

Why this name? What was it invented for?

And for those who search fundings for their start-up

Data mining is descriptive analytics:

- My data contains A and B

Machine Learning is predictive analytics:
$>$ if A happens, then B will happen

Operations Research is prescriptive analytics:

- if I want B to happen, then I must do A

As such, OR is a key tool of artificial intelligence

More prosaically, Big Data have multiplied the fields of applications of OR, and there are too few experts today

Examples of Operations Research problems

- Find the best tour
- Plan the best timetable
- Find the most resilient network
- Fill a container optimally

- Locate facilities/warehouses optimally M
- Schedule jobs on machines

The founding fathers

Monge, Blackett, Dantzig.

Fast growth since the fifties
academia (maths, computer science),
industry (supply chain, transport, telecommunications, etc.)

Two keywords: Modeling et Optimization.

Performances on the traveling salesman problem

1954	Dantzig, Fulkerson, Johnson	49 cities
1971	Held, Karp	64 cities
1975	Camerini, Fratta, Maffioli	67 cities
1977	Grötschel	120 cities
1980	Crowder, Padberg	318 cities
1987	Padberg, Rinaldi	532 cities
1987	Grötschel, Holland	666 cities
1987	Padberg, Rinaldi	$2^{\prime} 392$ cities
1994	Applegate, Bixby, Chvátal, Cook	$7^{\prime} 3^{397}$ cities
1998	Applegate, Bixby, Chvátal, Cook	$13^{\prime} 509$ cities
2001	Applegate, Bixby, Chyátal, Cook	$15^{\prime} 112$ citites
2004	Applegate, Bixby, Chvátal, Cook, Helsgaun	$24^{\prime} 978$ cities

And it is not a question of computer performances. Initial algorithms on today's computers would not deal with 100 cities.

1. What is Operations Research

2. Syllabus
3. Graphs
4. Complexity

Syllabus: tools

L1, sep. 26 Graphs and complexity

L2, oct. 3 Shortest paths and dynamic programming

L3, oct. 10 Network flows

L4, oct. 17 Bipartite graphs and Linear Programming . . .

L5, oct. 24 Mixed Integer Linear Programming
L6, nov. 14 Heuristics $e^{-\frac{z}{k_{B} T}}$
L7, nov. 28 Exercises + Introduction to Implementation (Julia)

Groups

3 groups.

Syllabus: Applications

L8 dec 5 Project (self-learning)
L9 dec 12 Facility location and bin-packing + Industrial presentation (Frédéric Gardi - Localsolver) 1h

L10 dec 19 Network design + Industrial presentation (Thibault Corneloup Air France)

L11 jan 9 Routing + Intervention 1h (Mathieu Sanchez)
L12 jan 16 Scheduling (self-learning)
L13 jan 23 Exam

Evaluation

- Multiple choice tests (mandatory) on Educnet
- Project
- Final Exam

$$
\text { Note }=\frac{2}{5} \cdot \text { Project }+\frac{3}{5} \cdot \text { Exam }
$$

No re-sit exam if more than 1 unjustified absence or more than 1 undone multiple choice test

Resources

Frédéric Meunier's monograph
New monograph (progressively updated on Educnet):
Please indicate me the typos: axel.parmentier@enpc.fr up to two bonus points for those who identify

Three previous exams

Hackathon

The problem of the miniproject will be the same as the one of the Hackathon
Agenda :
L7, nov. 28 Introduction to Implementation (Julia)
nov. 29 Hackathon (voluntary) + subject available on Educnet
L8, dec. 5 "Séance en autonomie" on the project
jan. 16 End of the project

1. What is Operations Research

2. Syllabus
3. Graphs
3.1 Modeling
3.2 Undirected graphs
3.3 Optimization
4. Complexity

In the textbook

Complexity: Chapter 2
Graphs: Chapter 3

Modeling

Model $=$
A mathematical transcription of reality that enables to apply mathematical theory and tools, and translate their results into prediction and decisions in the real world.

Two kinds of models

- Epistemology: model to understand a complicated phenomenon
- Praxeology: model to decide

Operations Research: models to find a good/the best decision in a huge set of potential ones

Graphs

Graph : $G=(V, E)$
V : set of sommets
E : set of edges $=$ unordered pairs of vertices

degree $\operatorname{deg}(v)$ of a vertex v : number of incident edges.

Simple graphs, complete graphs, bipartite graphs

Simple graph: at most one edge between two vertices
Complete graph: simple graph where every pair of vertices is an edge
Graphe biparti: vertices partitioned into two subsets such that there is no edge between two vertices of the same subset

Complete graphs, bipartite graphs
K_{n} : complete graph with n vertices
$K_{m, n}$: bipartite complete graph with m and n vertices

How many edges in K_{n} ? And in $K_{m, n}$?

Paths

Path: sequence of the form

$$
v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}
$$

$v_{i} \in V, e_{j} \in E$ with $e_{j}=v_{j-1} v_{j}$.
Simple path: crosses at most once an edge.
Elementary path: crosses at most once a vertex
Connected graph: a path between any pair of vertices

Cycles

Cycle : path such that $v_{0}=v_{k}$ and all the other vertices are contained at most once

Eulerian path/cycle: simple path/cycle containing all the edges
Hamiltonian path/cycle: elementary path/cycle containing all the vertices

Hamiltonian cycle

Hamilton (1805-1865) invented the "Icosian Game", which was not a commercial success.

Icosian game

Find a Hamiltonian cycle

Icosian game

Find a Hamiltonian cycle

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian / Eulerian cycles.

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian / Eulerian cycles.

- Traveling salesman
- Post office

Königsberg bridges (1736) - Euler (1707-1783)

Is it possible to go through all the bridge of
Königsberg
without crossing
twice the same bridge?

Königsberg bridges (1736) - Euler (1707-1783)

Is it possible to go through all the bridge of Königsberg without crossing twice the same bridge?

A graph is Eulerian \Leftrightarrow has at most two vertices of odd degree.

What is the minimum number of bridges crossed?

Königsberg bridges (1736) - Euler (1707-1783)

Is it possible to go through all the bridge of Königsberg without crossing twice the same bridge?

A graph is Eulerian \Leftrightarrow has at most two vertices of odd degree.

What is the minimum number of bridges crossed?
8

Graphs : coloring

Coloring : $c: V \rightarrow \mathbb{N}$ ($\mathbb{N}=$ colors $)$.

Proper coloring : for any neighbor u, v, we have $c(u) \neq c(v)$.

Chromatic number $\chi(G)$: minimum numbers of colors in a proper coloring

Modeling with colorings

A set F of formations must be given to employees of a firm. Each employee i must follow a subset F_{i} of formations. The firm wants to find the minimum number of formation slots it must schedule so that each employee can attend to its formations. Model this problem as a coloring problem.

Optimization

$\begin{array}{cc}\text { Min } & f(x) \\ \text { s.c. } & x \in X .\end{array}$
f : criteria / objective.
" s.t. " = "subject to"
X : set of feasible solutions
" $x \in X$ " : constraints of the Optimization program.
Among the feasible solutions, we seek an optimal solution x^{*}, i.e., a feasible solution that minimizes the criteria.

Minimization: on the importance of lower bounds

$$
\begin{aligned}
& \text { OPT }=\operatorname{Min} f(x) \\
& \text { s.c. } x \in X \text {. }
\end{aligned}
$$

Always ask if there is a simple and good quality lower bound to OPT.
Enables to evaluate the quality of a solution \rightarrow identify when to stop searching, and possibly to the optimality of the solution

Coloration

Graphe coloré avec cinq couleurs: $\mathrm{r}, \mathrm{b}, \mathrm{j}, \mathrm{v}, \mathrm{n}$.
Can we color this graph with fewer than five colors?

Coloring and complete subgraph: an inequality
cardinal of a complete subgraph \leq number of colors in a proper coloring.

We denote by $\omega(G)$ the maximum cardinality of a complete subgraph of G.

$$
\omega(G) \leq \chi(G) .
$$

Matchings and covers

Set of edges two by two disjoint: matching

Set of vertices S such that each edge contains a vertex in S : cover

Give example of problems modeled by matching / covers.

Matching and covering: an inequality

$\tau(G)$: minimum cardinality of a cover
$\nu(G)$: maximum cardinality of a matching

Prove that

$$
\nu(G) \leq \tau(G)
$$

Matching and covering: an inequality
$\tau(G)$: minimum cardinality of a cover
$\nu(G)$: maximum cardinality of a matching

Prove that

$$
\nu(G) \leq \tau(G)
$$

Let M be a matching C a vertex cover. Then

$$
|M| \leq|C| .
$$

1. What is Operations Research

2. Syllabus
3. Graphs
4. Complexity

Problem

Problem:
Input
Question / task

Example of problems

EUlerian path problem
Input. A graph G
Question. Is there an Eulerian path in G ?

Maximum weight matching
Input. A graph $G=(V, E)$, a weight function $w: E \rightarrow \mathbb{Q}_{+}$.
Output. A maximum weight matching in G.

Decision problem: answer by yes or no to a question.
Optimization problem: find the optimum of a function (under some constraints)

Algorithm

Algorithm: a sequence of elementary operations that can be implemented on a computer.

Given a problem \mathcal{P} and an algorithm \mathcal{A} solving it, we can ask how efficient it is.

Complexity theory

Complexity function

Time complexity $f(n)$ of an algorithm: number of elementary operation that must be realized if the input is of size n.
Example:

1. Sorting n integers?
2. Testing if an Eulerian cycles exists?

Complexity function

Time complexity $f(n)$ of an algorithm: number of elementary operation that must be realized if the input is of size n.

Example:

1. Sorting n integers?
2. Testing if an Eulerian cycles exists?
3. $O(n \log (n))$
4. $O(m+n)$

Time complexity $f(n)$ of an algorithm: number of elementary operation that must be realized if the input is of size n.

Example:

1. Sorting n integers?
2. Testing if an Eulerian cycles exists?
3. $O(n \log (n))$
4. $O(m+n)$
"Clean" definition of algorithm, size of the input, and time complexity.
requires to formalize what is an algorithm on a computer

- See textbook for more details
- Informal understanding sufficient for this lecture

Polynomial vs exponential algorithm

Polynomial algorithm: time complexity in $=O\left(n^{a}\right)$ with a fixed.
Otherwise, exponential algorithm.

	Size n			
Time complexity	10	20	50	60
n	$0,01 \mu \mathrm{~s}$	$0,02 \mu \mathrm{~s}$	$0,05 \mu \mathrm{~s}$	$0,06 \mu \mathrm{~s}$
n^{2}	$0,1 \mu \mathrm{~s}$	$0,4 \mu \mathrm{~s}$	$2,5 \mu \mathrm{~s}$	$3,6 \mu \mathrm{~s}$
n^{3}	$1 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$125 \mu \mathrm{~s}$	$216 \mu \mathrm{~s}$
n^{5}	$0,1 \mathrm{~ms}$	$3,2 \mathrm{~ms}$	$312,5 \mathrm{~ms}$	$777,6 \mathrm{~ms}$
2^{n}	$\sim 1 \mu \mathrm{~s}$	$\sim 1 \mathrm{~ms}$	~ 13 jours	~ 36.5 years

Table: Comparison of different time complexity functions on a computer executing 1 billion operations per second.

A question of computer speed?

Let \mathcal{A} be an algorithm solving a problem \mathcal{P} in 2^{n} operations. We have a computer that solved \mathcal{P} with \mathcal{A} in 1 hour for instances of size up to $n=438$.

With a computer 1000 times faster, instances of up to which size wan we solve in 1 hour?

A question of computer speed?

Let \mathcal{A} be an algorithm solving a problem \mathcal{P} in 2^{n} operations. We have a computer that solved \mathcal{P} with \mathcal{A} in 1 hour for instances of size up to $n=438$.

With a computer 1000 times faster, instances of up to which size wan we solve in 1 hour?
448

Size of the largest instance that we can solved in 1 hour

Complexity function	Present day computer	Computer $100 \times$ faster	Computer $1000 \times$ faster
n	N_{1}	$100 N_{1}$	$1000 N_{1}$
n^{2}	N_{2}	$10 N_{2}$	$31.6 N_{2}$
n^{3}	N_{3}	$4.64 N_{3}$	$10 N_{3}$
n^{5}	N_{4}	$2.5 N_{4}$	$3.98 N_{4}$
2^{n}	N_{5}	$N_{5}+6.64$	$N_{5}+9.97$
3^{n}	N_{6}	$N_{6}+4.19$	$N_{6}+6.29$

Table: Comparison of different complexity functions

Complexity classes

A decision problem is polynomial or in \mathscr{P} if there exists a polynomial algorithm that solves it.

A decision problem is non-deterministically polynomial or in $\mathscr{N} \mathscr{P}$ if, if the answer is yes, there exists a certificate and a polynomial algorithm that enables to check that the solution is yes.

Example of problem in $\mathscr{N P}$

Hamiltonian cycle
Input. A graph $G=(V, E)$
Question. Does G have a Hamiltonian cycle

Show that the Hamiltonian cycle problem is in $\mathscr{N} \mathscr{P}$ (Give a certificate)

For $F \subseteq E$, we can test in polynomial if F is a Hamiltonian cycle. F is a certificate.
The Hamiltonian cycle problem is in $\mathscr{N} \mathscr{P}$.

Class $\mathfrak{N P}$

Proposition

$$
\mathscr{P} \subseteq \mathscr{N} \mathscr{P} .
$$

Proof.

If the answer is yes, the input is a certificate.
$\mathcal{N} \mathscr{P}$-complete problem

A problem \mathcal{P} is $\mathscr{N} \mathscr{P}$-complete if
$>\mathcal{P}$ is in $\mathscr{N} \mathscr{P}$
$>\mathcal{P}$ is at least as difficult as any problem in $\mathscr{N} \mathscr{P}$.

If there exists a polynomial algorithm solving an $\mathscr{N} \mathscr{P}$-complete problem, then there is a polynomial algorithm solving any problem in $\mathscr{N} \mathscr{P}$.

Theorem (Cook, 1970)
There exists $\mathscr{N} \mathscr{P}$-complete problems.

What does "at least as difficult" mean

Example of $\mathscr{N} \mathscr{P}$-complete problem

Hamiltonian cycle
Input. A graph $G=(V, E)$
Question. Does G have a Hamiltonian cycle

A polynomial reduction of a decision problem \mathcal{P}^{\prime} to a problem \mathcal{P} is a function f that transforms an instances x^{\prime} of \mathcal{P}^{\prime} into an instance x of \mathcal{P} such that
$\Rightarrow \operatorname{size}\left(x^{\prime}\right)=O\left(\operatorname{size}\left(P\left(f\left(x^{\prime}\right)\right)\right)\right)$ where P is a polynomial
\Rightarrow the answer of \mathcal{P}^{\prime} for x^{\prime} is yes if and only if the answer of \mathcal{P} for $f\left(x^{\prime}\right)$ is yes.

How to prove that a problem \mathcal{P} is $\mathscr{N} \mathscr{P}$-complete?
\Rightarrow Prove that \mathcal{P} is in $\mathscr{N} \mathscr{P}$
\Rightarrow Prove that an $\mathscr{N} \mathscr{P}$-complete problem \mathcal{P}^{\prime} reduces to (a polynomial number of instances of) \mathcal{P}
$\mathscr{N} \mathscr{P}$-hard problem

A problem is $\mathscr{N} \mathscr{P}$-hard if
$>\mathcal{P}$ is at least as difficult as any problem in $\mathscr{N} \mathscr{P}$.

Only decision problems can be $\mathscr{N} \mathscr{P}$-complete. Optimization and decisions problems can be $\mathscr{N} \mathscr{P}$-hard.

How to prove that a problem \mathcal{P} is $\mathscr{N} \mathscr{P}$-hard?
Prove that an $\mathscr{N} \mathscr{P}$-complete problem \mathcal{P}^{\prime} reduces to \mathcal{P}

Complexity classes

 Paris Tech

1 million \$ question

$$
\mathscr{P} \stackrel{?}{=} \mathscr{N} \mathscr{P}
$$

funded by the Clay institute

Exercise

1. Prove that the problem of existence of a Hamiltonian path is $\mathscr{N} \mathscr{P}$ -complete, knowing that the problem of existence of a Hamiltonian cycle is $\mathscr{N} \mathscr{P}$-complete
2. Prove that the problem of existence of a Hamiltonian cycle is $\mathscr{N} \mathscr{P}$ -complete, knowing that the problem of existence of a Hamiltonian path is $\mathscr{N} \mathscr{P}$-complete
