

Introduction to Operations Research

CERMICS, ENPC Axel Parmentier
September 26, 2018

Mister Supersales must plan his tour

A. Parmentier, ENPC September 26, 2018 2 / 59

Mister supersale has planned his tour

A. Parmentier, ENPC September 26, 2018 3 / 59

Is there an optimal solution?

Is there an optimal solution?

Yes: finite set of solution

Can we enumerate all the solutions?

Is there an optimal solution?

Yes: finite set of solution

Can we enumerate all the solutions?

With 25 cities, we have $24! = 24 \times 23 \times 22 \times \cdots \times 2 \times 1$ possibilities, that is, around 6.204×10^{25} possibilities.

Using paper and pencil, testing 1 possibility per second, requires around 1.976×10^{16} years.

Testing 1 million possibilities per second with a computer, requires 19 billion years.

Part

- 1. What is Operations Research
- Syllabus
- 3. Graphs
- 4. Complexity

Operations Research

The traveling salesman problem is one of the most famous Operations Research problem.

Operations Research (OR):

mathematical discipline that deals with the optimal allocation of resources (typically in firms).

A. Parmentier, ENPC September 26, 2018 6

Operations Research

The traveling salesman problem is one of the most famous Operations Research problem.

Operations Research (OR):

mathematical discipline that deals with the optimal allocation of resources (typically in firms).

Why this name? What was it invented for?

And for those who search fundings for their start-up

Data mining is descriptive analytics:

My data contains A and B

Machine Learning is predictive analytics:

if A happens, then B will happen

Operations Research is prescriptive analytics:

if I want B to happen, then I must do A

As such, OR is a key tool of artificial intelligence

More prosaically, Big Data have multiplied the fields of applications of OR, and there are too few experts today

A. Parmentier, ENPC September 26, 2018 7 / 59

Examples of Operations Research problems

• Find the best tour

Plan the best timetable

Find the most resilient network

• Fill a container optimally

• Locate facilities/warehouses optimally

• Schedule jobs on machines

A. Parmentier, ENPC September 26, 2018

The founding fathers

Monge, Blackett, Dantzig.

Fast growth since the fifties

- academia (maths, computer science),
- industry (supply chain, transport, telecommunications, etc.)

Two keywords: Modeling et Optimization.

A. Parmentier, ENPC September 26, 2018

Performances on the traveling salesman problem

1954	Dantzig, Fulkerson, Johnson	49 cities
1971	Held, Karp	64 cities
1975	Camerini, Fratta, Maffioli	67 cities
1977	Grötschel	120 cities
1980	Crowder, Padberg	318 cities
1987	Padberg, Rinaldi	532 cities
1987	Grötschel, Holland	666 cities
1987	Padberg, Rinaldi	2'392 cities
1994	Applegate, Bixby, Chvátal, Cook	7′397 cities
1998	Applegate, Bixby, Chvátal, Cook	13′509 cities
2001	Applegate, Bixby, Chvátal, Cook	15'112 cities
2004	Applegate, Bixby, Chvátal, Cook, Helsgaun	24'978 cities

And it is not a question of computer performances. Initial algorithms on today's computers would not deal with 100 cities.

A. Parmentier, ENPC September 26, 2018 11 / 59

Part

- 1. What is Operations Research
- 2. Syllabus
- 3. Graphs
- 4. Complexity

Syllabus: tools

L1, sep. 26 Graphs and complexity

L2, oct. 3 Shortest paths and dynamic programming

L3, oct. 10 Network flows

L4, oct. 17 Bipartite graphs and Linear Programming

L5, oct. 24 Mixed Integer Linear Programming

L6, nov. 14 Heuristics $e^{-\frac{z}{k_BT}}$

L7, nov. 28 Exercises + Introduction to Implementation (Julia)

Groups

 $3 \ groups. \\$

Syllabus: Applications

- L8 dec 5 Project (self-learning)
- L9 dec 12 Facility location and bin-packing + Industrial presentation (Frédéric Gardi Localsolver) 1h
- L10 dec 19 Network design + Industrial presentation (Thibault Corneloup Air France)
- L11 jan 9 Routing + Intervention 1h (Mathieu Sanchez)
- L12 jan 16 Scheduling (self-learning)
- L13 jan 23 Exam

A. Parmentier, ENPC September 26, 2018 15 / 59

Evaluation

16 / 59

- ► Multiple choice tests (mandatory) on Educnet
- Project
- Final Exam

$$Note = \frac{2}{5} \cdot Project + \frac{3}{5} \cdot Exam$$

No re-sit exam if more than 1 unjustified absence or more than 1 undone multiple choice test

Resources

Frédéric Meunier's monograph

New monograph (progressively updated on Educnet):

- Please indicate me the typos: axel.parmentier@enpc.fr
- up to two bonus points for those who identify

Three previous exams

A. Parmentier, ENPC September 26, 2018 17 / 59

Hackathon

18 / 59

Project

The problem of the miniproject will be the same as the one of the Hackathon Agenda:

L7, nov. 28 Introduction to Implementation (Julia)

nov. 29 Hackathon (voluntary) + subject available on Educnet

L8, dec. 5 "Séance en autonomie" on the project

jan. 16 End of the project

A. Parmentier, ENPC September 26, 2018 19 / 59

Part

20 / 59

- 1. What is Operations Research
- 2. Syllabus
- 3. Graphs
- 3.1 Modeling
- 3.2 Undirected graphs
- 3.3 Optimization
- 4. Complexity

A. Parmentier, ENPC September 26, 2018

In the textbook

Complexity: Chapter 2

Graphs: Chapter 3

Modeling

Model =

A mathematical transcription of reality that enables to apply mathematical theory and tools, and translate their results into prediction and decisions in the real world.

Two kinds of models

Epistemology: model to understand a complicated phenomenon

Praxeology: model to decide

Operations Research: models to find a good/the best decision in a huge set of potential ones

A. Parmentier, ENPC September 26, 2018 22 / 59

Graphs

 $\mathsf{Graph}:\ \mathit{G}=(\mathit{V},\mathit{E})$

V : set of sommets

E: set of edges = unordered pairs of vertices

degree deg(v) of a vertex v: number of incident edges.

Simple graphs, complete graphs, bipartite graphs

Simple graph: at most one edge between two vertices

Complete graph: simple graph where every pair of vertices is an edge

Graphe biparti: vertices partitioned into two subsets such that there is no edge between two vertices of the same subset

A. Parmentier, ENPC September 26, 2018 24

Complete graphs, bipartite graphs

 K_n : complete graph with n vertices

 $K_{m,n}$: bipartite complete graph with m and n vertices

How many edges in K_n ? And in $K_{m,n}$?

Paths

Path: sequence of the form

$$v_0, e_1, v_1, \ldots, e_k, v_k$$

$$v_i \in V$$
, $e_j \in E$ with $e_j = v_{j-1}v_j$.

Simple path: crosses at most once an edge.

Elementary path: crosses at most once a vertex

Connected graph: a path between any pair of vertices

Cycles

Cycle : path such that $v_0 = v_k$ and all the other vertices are contained at most once

Eulerian path/cycle: simple path/cycle containing all the edges

Hamiltonian path/cycle: elementary path/cycle containing all the vertices

A. Parmentier, ENPC September 26, 2018 27 / 59

Hamiltonian cycle

28 / 59

A. Parmentier, ENPC September 26, 2018

Hamilton (1805–1865) invented the "Icosian Game", which was not a commercial success.

A. Parmentier, ENPC September 26, 2018 29 / 59

Icosian game

Find a Hamiltonian cycle

A. Parmentier, ENPC September 26, 2018 30 / 59

Icosian game

Find a Hamiltonian cycle

A. Parmentier, ENPC September 26, 2018 30

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian / Eulerian cycles.

A. Parmentier, ENPC September 26, 2018 31

Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian / Eulerian cycles.

- ► Traveling salesman
- Post office

Königsberg bridges (1736) – Euler (1707–1783)

Is it possible to go through all the bridge of Königsberg without crossing twice the same bridge?

A. Parmentier, ENPC September 26, 2018 32 / 59

Königsberg bridges (1736) - Euler (1707-1783)

Is it possible to go through all the bridge of Königsberg without crossing twice the same bridge?

A graph is Eulerian \Leftrightarrow has at most two vertices of odd degree.

What is the minimum number of bridges crossed?

A. Parmentier, ENPC September 26, 2018 32 / 59

Königsberg bridges (1736) - Euler (1707-1783)

Is it possible to go through all the bridge of Königsberg without crossing twice the same bridge?

A graph is Eulerian \Leftrightarrow has at most two vertices of odd degree.

What is the minimum number of bridges crossed?

8

Graphs: coloring

Coloring : $c: V \to \mathbb{N}$ ($\mathbb{N}=$ colors).

Proper coloring: for any neighbor u, v, we have $c(u) \neq c(v)$.

Chromatic number $\chi(G)$: minimum numbers of colors in a proper coloring

Modeling with colorings

A set F of formations must be given to employees of a firm. Each employee i must follow a subset F_i of formations. The firm wants to find the minimum number of formation slots it must schedule so that each employee can attend to its formations. Model this problem as a coloring problem.

A. Parmentier, ENPC September 26, 2018 34 / 59

Optimization

Min
$$f(x)$$
 s.c. $x \in X$.

f: criteria / objective.

"s.t." = "subject to"

X : set of feasible solutions

" $x \in X$ ": constraints of the Optimization program.

Among the feasible solutions, we seek an *optimal solution* x^* , i.e., a feasible solution that minimizes the criteria.

Minimization: on the importance of lower bounds

$$\begin{array}{rcl}
\mathsf{OPT} &=& \mathsf{Min} & f(x) \\
& \mathsf{s.c.} & x \in X.
\end{array}$$

Always ask if there is a simple and good quality lower bound to OPT.

Enables to evaluate the quality of a solution \rightarrow identify when to stop searching, and possibly to the optimality of the solution

Coloration

Graphe coloré avec cinq couleurs: r, b, j, v, n.

Can we color this graph with fewer than five colors?

A. Parmentier, ENPC September 26, 2018 37 / 59

Coloring and complete subgraph: an inequality

cardinal of a complete subgraph \leq number of colors in a proper coloring.

We denote by $\omega(G)$ the maximum cardinality of a complete subgraph of G.

$$\omega(G) \leq \chi(G)$$
.

Matchings and covers

Set of edges two by two disjoint: matching

Set of vertices S such that each edge contains a vertex in S: cover

Give example of problems modeled by matching / covers.

Matching and covering: an inequality

 $au({\it G})$: minimum cardinality of a cover $u({\it G})$: maximum cardinality of a matching

Prove that

$$\nu(G) \leq \tau(G)$$
.

Matching and covering: an inequality

 $\tau({\it G}):$ minimum cardinality of a cover $\nu({\it G}):$ maximum cardinality of a matching

Prove that

$$\nu(G) \leq \tau(G)$$
.

Let M be a matching C a vertex cover. Then

$$|M| \leq |C|$$
.

Part

- 1. What is Operations Research
- Syllabus
- 3. Graphs
- 4. Complexity

Problem

42 / 59

Problem:

- Input
- Question / task

Example of problems

Eulerian Path Problem

Input. A graph G

Question. Is there an Eulerian path in *G*?

MAXIMUM WEIGHT MATCHING

Input. A graph G = (V, E), a weight function $w : E \to \mathbb{Q}_+$.

Output. A maximum weight matching in *G*.

Types of problems

Decision problem: answer by yes or no to a question.

Optimization problem: find the optimum of a function (under some constraints)

A. Parmentier, ENPC September 26, 2018 44 / 59

Algorithm

Algorithm: a sequence of *elementary operations* that can be implemented on a computer.

Given a problem ${\mathcal P}$ and an algorithm ${\mathcal A}$ solving it, we can ask how efficient it is.

Complexity theory

A. Parmentier, ENPC September 26, 2018 45 / 59

Complexity function

Time complexity f(n) of an algorithm: number of elementary operation that must be realized if the input is of size n.

Example:

- 1. Sorting *n* integers?
- 2. Testing if an Eulerian cycles exists?

A. Parmentier, ENPC September 26, 2018 46 / 59

Complexity function

46 / 59

Time complexity f(n) of an algorithm: number of elementary operation that must be realized if the input is of size n.

Example:

- 1. Sorting *n* integers?
- 2. Testing if an Eulerian cycles exists?
- 1. $O(n \log(n))$
- 2. O(m+n)

Complexity function

46 / 59

Time complexity f(n) of an algorithm: number of elementary operation that must be realized if the input is of size n.

Example:

- 1. Sorting *n* integers?
- 2. Testing if an Eulerian cycles exists?
- 1. $O(n\log(n))$
- 2. O(m+n)

"Clean" definition of algorithm, size of the input, and time complexity.

- requires to formalize what is an algorithm on a computer
- See textbook for more details
- Informal understanding sufficient for this lecture

Polynomial vs exponential algorithm

Polynomial algorithm: time complexity in $= O(n^a)$ with a fixed.

Otherwise, exponential algorithm.

	Size n			
Time complexity	10	20	50	60
n	$0,01 \; \mu s$	$0,02~\mu s$	$0,05 \; \mu s$	$0,06~\mu s$
n ²	$0,1~\mu s$	$0,4~\mu s$	$2,5~\mu s$	$3,6~\mu s$
n ³	1 μs	8 μs	$125~\mu s$	216 μs
n ⁵	$0,1~\mathrm{ms}$	3, 2 ms	312, 5 ms	777,6 ms
2 ⁿ	$\sim 1~\mu s$	$\sim 1 \text{ ms}$	~ 13 jours	~ 36.5 years

Table: Comparison of different time complexity functions on a computer executing 1 billion operations per second.

A. Parmentier, ENPC September 26, 2018 47 / 59

A question of computer speed?

Let \mathcal{A} be an algorithm solving a problem \mathcal{P} in 2^n operations. We have a computer that solved \mathcal{P} with \mathcal{A} in 1 hour for instances of size up to n=438.

With a computer 1000 times faster, instances of up to which size wan we solve in 1 hour?

A. Parmentier, ENPC September 26, 2018 48 / 59

A question of computer speed?

Let \mathcal{A} be an algorithm solving a problem \mathcal{P} in 2^n operations. We have a computer that solved \mathcal{P} with \mathcal{A} in 1 hour for instances of size up to n=438.

With a computer 1000 times faster, instances of up to which size wan we solve in 1 hour?

A. Parmentier, ENPC September 26, 2018 48 / 59

A question of computer speed?

Size of the largest instance that we can solved in 1 hour

Complexity	Present day	Computer	Computer
function	computer	$100 imes ext{faster}$	1000 imes faster
n	N_1	100 <i>N</i> ₁	1000 <i>N</i> ₁
n^2	N_2	10 <i>N</i> ₂	$31.6N_2$
n^3	N ₃	4.64 <i>N</i> ₃	10 <i>N</i> ₃
n^5	N ₄	2.5 <i>N</i> ₄	3.98 <i>N</i> ₄
2 ⁿ	N ₅	$N_5 + 6.64$	$N_5 + 9.97$
3 ⁿ	N ₆	$N_6 + 4.19$	$N_6 + 6.29$

Table: Comparison of different complexity functions

Complexity classes

A *decision problem* is polynomial or in ${\mathscr P}$ if there exists a polynomial algorithm that solves it.

A *decision problem* is non-deterministically polynomial or in \mathscr{NP} if, if the answer is yes, there exists a certificate and a polynomial algorithm that enables to check that the solution is yes.

A. Parmentier, ENPC September 26, 2018 50 / 59

Example of problem in \mathscr{NP}

HAMILTONIAN CYCLE

Input. A graph G = (V, E)

Question. Does G have a Hamiltonian cycle

Show that the $\operatorname{Hamiltonian}$ CYCLE problem is in \mathscr{NP} (Give a certificate)

For $F \subseteq E$, we can test in polynomial if F is a Hamiltonian cycle. F is a certificate.

The Hamiltonian cycle problem is in \mathcal{NP} .

Class NP

Proposition

$$\mathscr{P}\subseteq \mathscr{NP}$$
.

Proof.

If the answer is yes, the input is a certificate.

A. Parmentier, ENPC September 26, 2018 52 / 59

\mathcal{NP} -complete problem

A problem \mathcal{P} is \mathscr{NP} -complete if

- $ightharpoonup \mathcal{P}$ is in \mathscr{NP}
- $ightharpoonup \mathcal{P}$ is at least as difficult as any problem in \mathscr{NP} .

If there exists a polynomial algorithm solving an \mathscr{NP} -complete problem, then there is a polynomial algorithm solving any problem in \mathscr{NP} .

Theorem (Cook, 1970)

There exists \mathcal{NP} -complete problems.

What does "at least as difficult" mean

A. Parmentier, ENPC September 26, 2018 53 / 59

Example of $\mathscr{NP}\text{-complete}$ problem

HAMILTONIAN CYCLE

Input. A graph G = (V, E)

Question. Does G have a Hamiltonian cycle

Polynomial reduction

A *polynomial reduction* of a decision problem \mathcal{P}' to a problem \mathcal{P} is a function f that transforms an instances x' of \mathcal{P}' into an instance x of \mathcal{P} such that

- ightharpoonup size(x') = O(size(P(f(x')))) where P is a polynomial
- ▶ the answer of \mathcal{P}' for x' is yes if and only if the answer of \mathcal{P} for f(x') is yes.

How to prove that a problem \mathcal{P} is \mathscr{NP} -complete?

- \triangleright Prove that \mathcal{P} is in \mathcal{NP}
- Prove that an \mathscr{NP} -complete problem \mathscr{P}' reduces to (a polynomial number of instances of) \mathscr{P}

A. Parmentier, ENPC September 26, 2018 55 / 59

\mathcal{NP} -hard problem

A problem is NP-hard if

 $ightharpoonup \mathcal{P}$ is at least as difficult as any problem in \mathscr{NP} .

Only decision problems can be \mathcal{NP} -complete. Optimization and decisions problems can be \mathcal{NP} -hard.

How to prove that a problem \mathcal{P} is \mathcal{NP} -hard?

lacktriangle Prove that an \mathscr{NP} -complete problem \mathcal{P}' reduces to \mathcal{P}

A. Parmentier, ENPC September 26, 2018 56 / 59

Complexity classes

A. Parmentier, ENPC September 26, 2018 57/59

1 million \$ question

$$\mathscr{P}\stackrel{?}{=}\mathscr{N}\mathscr{P}$$

funded by the Clay institute

Exercise

- 1. Prove that the problem of existence of a Hamiltonian path is \mathscr{NP} -complete, knowing that the problem of existence of a Hamiltonian cycle is \mathscr{NP} -complete
- 2. Prove that the problem of existence of a Hamiltonian cycle is \mathscr{NP} -complete, knowing that the problem of existence of a Hamiltonian path is \mathscr{NP} -complete

A. Parmentier, ENPC September 26, 2018 59 / 59