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Traveling salesman problem
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Traveling salesman problem

Is there an optimal solution?

Yes: finite set of solution

Can we enumerate all the solutions?

With 25 cities, we have 24! = 24× 23× 22× · · · × 2× 1 possibilities, that
is, around 6.204× 1025 possibilities.

Using paper and pencil, testing 1 possibility per second, requires around
1.976× 1016 years.

Testing 1 million possibilities per second with a computer, requires 19
billion years.
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Operations Research

The traveling salesman problem is one of the most famous Operations
Research problem.

Operations Research (OR):
mathematical discipline that deals with the optimal allocation of resources
(typically in firms).

Why this name? What was it invented for?
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And for those who search fundings for their start-up

Data mining is descriptive analytics:

I My data contains A and B

Machine Learning is predictive analytics:

I if A happens, then B will happen

Operations Research is prescriptive analytics:

I if I want B to happen, then I must do A

As such, OR is a key tool of artificial intelligence

More prosaically, Big Data have multiplied the fields of applications of
OR, and there are too few experts today
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Examples of Operations Research problems

• Find the best tour
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• Plan the best timetable

• Find the most resilient network

• Fill a container optimally

• Locate facilities/warehouses optimally

• Schedule jobs on machines
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The founding fathers

Monge, Blackett, Dantzig.
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Fast growth since the fifties

I academia (maths, computer science),

I industry (supply chain, transport, telecommunications , etc.)

Two keywords : Modeling et Optimization.
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Performances on the traveling salesman problem

1954 Dantzig, Fulkerson, Johnson 49 cities
1971 Held, Karp 64 cities
1975 Camerini, Fratta, Maffioli 67 cities
1977 Grötschel 120 cities
1980 Crowder, Padberg 318 cities
1987 Padberg, Rinaldi 532 cities
1987 Grötschel, Holland 666 cities
1987 Padberg, Rinaldi 2′392 cities
1994 Applegate, Bixby, Chvátal, Cook 7′397 cities
1998 Applegate, Bixby, Chvátal, Cook 13′509 cities
2001 Applegate, Bixby, Chvátal, Cook 15′112 cities
2004 Applegate, Bixby, Chvátal, Cook, Helsgaun 24′978 cities

And it is not a question of computer performances. Initial algorithms on
today’s computers would not deal with 100 cities.
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Syllabus: tools

L1, sep. 26 Graphs and complexity

L2, oct. 3 Shortest paths and dynamic programming

L3, oct. 10 Network flows

L4, oct. 17 Bipartite graphs and Linear Programming

L5, oct. 24 Mixed Integer Linear Programming

L6, nov. 14 Heuristics e
− z

kBT

L7, nov. 28 Exercises + Introduction to Implementation (Julia)
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Groups

3 groups.
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Syllabus: Applications

L8 dec 5 Project (self-learning)

L9 dec 12 Facility location and bin-packing + Industrial presentation
(Frédéric Gardi – Localsolver) 1h

L10 dec 19 Network design + Industrial presentation (Thibault Corneloup –
Air France)

L11 jan 9 Routing + Intervention 1h (Mathieu Sanchez)

L12 jan 16 Scheduling (self-learning)

L13 jan 23 Exam
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Evaluation

I Multiple choice tests (mandatory) on Educnet

I Project

I Final Exam

Note =
2

5
·Project +

3

5
·Exam

No re-sit exam if more than 1 unjustified absence or more than 1 undone
multiple choice test
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Resources

Frédéric Meunier’s monograph

New monograph (progressively updated on Educnet):

I Please indicate me the typos: axel.parmentier@enpc.fr

I up to two bonus points for those who identify

Three previous exams
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Hackathon
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Project

The problem of the miniproject will be the same as the one of the
Hackathon
Agenda :

L7, nov. 28 Introduction to Implementation (Julia)

nov. 29 Hackathon (voluntary) + subject available on Educnet

L8, dec. 5 “Séance en autonomie” on the project

jan. 16 End of the project
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In the textbook

Complexity: Chapter 2

Graphs: Chapter 3
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Modeling

Model =

A mathematical transcription of reality that enables to apply math-
ematical theory and tools, and translate their results into prediction
and decisions in the real world.

Two kinds of models

I Epistemology: model to understand a complicated phenomenon

I Praxeology: model to decide

Operations Research: models to find a good/the best decision in a huge set
of potential ones
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Graphs

Graph : G = (V ,E )
V : set of sommets
E : set of edges = unordered pairs of vertices

v1

v2

v3

v4

v5

v6

v1v2

v1v2

v3v3

v5v6

v3v4

v2v5

degree deg(v) of a vertex v : number of incident edges.
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Simple graphs, complete graphs, bipartite graphs

Simple graph: at most one edge between two vertices

Complete graph: simple graph where every pair of vertices is an edge

Graphe biparti: vertices partitioned into two subsets such that there is no
edge between two vertices of the same subset
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Complete graphs, bipartite graphs

Kn: complete graph with n vertices

Km,n: bipartite complete graph with m and n vertices

How many edges in Kn? And in Km,n?

A. Parmentier, ENPC September 26, 2018 25 / 59



Paths

Path : sequence of the form

v0, e1, v1, . . . , ek , vk

vi ∈ V , ej ∈ E with ej = vj−1vj .

Simple path: crosses at most once an edge.

Elementary path: crosses at most once a vertex

Connected graph: a path between any pair of vertices
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Cycles

Cycle : path such that v0 = vk and all the other vertices are contained at
most once

Eulerian path/cycle: simple path/cycle containing all the edges

Hamiltonian path/cycle: elementary path/cycle containing all the vertices
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Hamiltonian cycle
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Hamilton (1805–1865) invented the “Icosian Game”, which was not a
commercial success.

A. Parmentier, ENPC September 26, 2018 29 / 59



Icosian game

Find a Hamiltonian cycle
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Modeling with cycles

Give examples of real-life problems whose solutions are Hamiltonian /
Eulerian cycles.

I Traveling salesman

I Post office
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Königsberg bridges (1736) – Euler (1707–1783)

Is it possible to go
through all the
bridge of
Königsberg
without crossing
twice the same
bridge?

A graph is Eulerian ⇔ has at most two vertices of odd degree.

What is the minimum number of bridges crossed?

8
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Graphs : coloring

Coloring : c : V → N (N= colors).

Proper coloring : for any neighbor u, v , we have c(u) 6= c(v).

Chromatic number χ(G ): minimum numbers of colors in a proper coloring
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Modeling with colorings

A set F of formations must be given to employees of a firm. Each em-
ployee i must follow a subset Fi of formations. The firm wants to find
the minimum number of formation slots it must schedule so that each
employee can attend to its formations. Model this problem as a coloring
problem.
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Optimization

Min f (x)
s.c. x ∈ X .

f : criteria / objective.
“ s.t. ” = “subject to”
X : set of feasible solutions
“ x ∈ X ” : constraints of the Optimization program.

Among the feasible solutions, we seek an optimal solution x∗, i.e., a feasible
solution that minimizes the criteria.
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Minimization: on the importance of lower bounds

OPT = Min f (x)
s.c. x ∈ X .

Always ask if there is a simple and good quality lower bound to OPT.

Enables to evaluate the quality of a solution → identify when to stop
searching, and possibly to the optimality of the solution
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Coloration

b

v
b

b

b

b

v

r

r
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n

j

j

Graphe coloré avec cinq couleurs: r, b, j, v, n.

Can we color this graph with fewer than five colors?
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Coloring and complete subgraph: an inequality

cardinal of a complete subgraph ≤ number of colors in a proper coloring.

We denote by ω(G ) the maximum cardinality of a complete subgraph of G .

ω(G ) ≤ χ(G ).
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Matchings and covers

Set of edges two by two disjoint: matching

Set of vertices S such that each edge contains a vertex in S : cover

: couverture par les sommets du graphe

Give example of problems modeled by matching / covers.
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Matching and covering: an inequality

τ(G ): minimum cardinality of a cover
ν(G ): maximum cardinality of a matching

Prove that

ν(G ) ≤ τ(G ).

Let M be a matching C
a vertex cover. Then

|M| ≤ |C |.
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Problem

Problem:

I Input

I Question / task
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Example of problems

Eulerian path problem
Input. A graph G
Question. Is there an Eulerian path in G?

Maximum weight matching
Input. A graph G = (V ,E ), a weight function w : E → Q+.
Output. A maximum weight matching in G .
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Types of problems

Decision problem: answer by yes or no to a question.

Optimization problem: find the optimum of a function (under some
constraints)
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Algorithm

Algorithm: a sequence of elementary operations that can be implemented
on a computer.

Given a problem P and an algorithm A solving it, we can ask how efficient
it is.

I Complexity theory
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Complexity function

Time complexity f (n) of an algorithm: number of elementary operation
that must be realized if the input is of size n.

Example:

1. Sorting n integers?

2. Testing if an Eulerian cycles exists?

1. O(n log(n))

2. O(m + n)

“Clean” definition of algorithm, size of the input, and time complexity.

I requires to formalize what is an algorithm on a computer

I See textbook for more details

I Informal understanding sufficient for this lecture
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Polynomial vs exponential algorithm

Polynomial algorithm: time complexity in = O(na) with a fixed.

Otherwise, exponential algorithm.

Size n
Time complexity 10 20 50 60

n 0, 01 µs 0, 02 µs 0, 05 µs 0, 06 µs
n2 0, 1 µs 0, 4 µs 2, 5 µs 3, 6 µs
n3 1 µs 8 µs 125 µs 216 µs
n5 0, 1 ms 3, 2 ms 312, 5 ms 777, 6 ms
2n ∼ 1 µs ∼ 1 ms ∼ 13 jours ∼ 36.5 years

Table: Comparison of different time complexity functions on a computer executing
1 billion operations per second.
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A question of computer speed?

Let A be an algorithm solving a problem P in 2n operations. We have a
computer that solved P with A in 1 hour for instances of size up to
n = 438.

With a computer 1000 times faster, instances of up to which size wan we
solve in 1 hour?

448
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A question of computer speed?

Size of the largest instance that we can solved in 1 hour
Complexity Present day Computer Computer

function computer 100 × faster 1000 × faster
n N1 100N1 1000N1

n2 N2 10N2 31.6N2

n3 N3 4.64N3 10N3

n5 N4 2.5N4 3.98N4

2n N5 N5 + 6.64 N5 + 9.97
3n N6 N6 + 4.19 N6 + 6.29

Table: Comparison of different complexity functions
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Complexity classes

A decision problem is polynomial or in P if there exists a polynomial
algorithm that solves it.

A decision problem is non-deterministically polynomial or in NP if, if the
answer is yes, there exists a certificate and a polynomial algorithm that
enables to check that the solution is yes.

A. Parmentier, ENPC September 26, 2018 50 / 59



Example of problem in NP

Hamiltonian cycle
Input. A graph G = (V ,E )
Question. Does G have a Hamiltonian cycle

Show that the Hamiltonian cycle problem is in NP (Give a certifi-
cate)

For F ⊆ E , we can test in polynomial if F is a Hamiltonian cycle. F is a
certificate.
The Hamiltonian cycle problem is in NP .
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Class NP

Proposition

P ⊆ NP .

Proof.

If the answer is yes, the input is a certificate.
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NP -complete problem

A problem P is NP -complete if

I P is in NP

I P is at least as difficult as any problem in NP .

If there exists a polynomial algorithm solving an NP -complete problem,

then there is a polynomial algorithm solving any problem in NP .

Theorem (Cook, 1970)

There exists NP -complete problems.

What does “at least as difficult” mean
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Example of NP -complete problem

Hamiltonian cycle
Input. A graph G = (V ,E )
Question. Does G have a Hamiltonian cycle
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Polynomial reduction

A polynomial reduction of a decision problem P ′ to a problem P is a
function f that transforms an instances x ′ of P ′ into an instance x of P
such that

I size(x ′) = O
(
size

(
P(f (x ′))

))
where P is a polynomial

I the answer of P ′ for x ′ is yes if and only if the answer of P for f (x ′) is
yes.

How to prove that a problem P is NP -complete?

I Prove that P is in NP

I Prove that an NP -complete problem P ′ reduces to (a polynomial
number of instances of) P
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NP -hard problem

A problem is NP -hard if

I P is at least as difficult as any problem in NP .

Only decision problems can be NP -complete. Optimization and decisions

problems can be NP -hard.

How to prove that a problem P is NP -hard?

I Prove that an NP -complete problem P ′ reduces to P
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Complexity classes

P

NP-complets

NP

NP-difficiles
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1 million $ question

P
?
= NP

funded by the Clay institute
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Exercise

1. Prove that the problem of existence of a Hamiltonian path is NP
-complete, knowing that the problem of existence of a Hamiltonian
cycle is NP -complete

2. Prove that the problem of existence of a Hamiltonian cycle is NP
-complete, knowing that the problem of existence of a Hamiltonian
path is NP -complete
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