
Scheduling

Axel Parmentier

January 16, 2019

According to Wikipedia, a “schedule is a time management tool con-
sisting of a list of times at which events are to occur, or an order in which
they are to occur.” Optimization of schedules has therefore countless appli-
cations, among which

• project management (see Section 1)

• production scheduling (Section 2 onwards)

• manpower scheduling (intersects production scheduling, but with speci-
ficities due to working rules)

• transport scheduling (see chapter on routing)

• computer scheduling (how to schedule threads, processes, and data
flows)

• etc.

In this lecture, we will focus on the two first applications.

1 Minimum duration of a project

Let J be a set of tasks j representing a project. Each task has a processing
time pj . Furthermore, we have some precedence constraints: some tasks
must be finished before others can be started. The objective is to find the
minimum duration of the project.

1. Explain why this problem can be solved as a longest s-t path problem
on a digraph D = (V,A) where V = J ∪ {s, t}, where s is a source
vertex, t is a sink vertex, and A is a set of arcs which should be
described, as well as the arc lengths.

Solution. There is an arc (j, j′) is task j must be performed before
task j′, as well as arc (s, j) and (j, t) for all t. The length of arc (s, j)
is 0, the length of an arc (j, ·) is pj .

1

Tasks Description Processing time Preceding tasks

A foundations 6 –
B wall constructions 10 A
C exterior plumbing 4 B
D interior plumbing 5 A
E electricity 7 A
F roof 6 B
G exterior painting 16 B,C,F
H panels 8 D,E
I floor 4 D,E
J interior 11 H,I

Table 1: House construction project

2. Which algorithm should be used to solve that problem?

Solution. The most efficient algorithm to compute a longest path is
an acyclic digraph is dynamic programming.

3. How can you identify the critical tasks, that is, the tasks for which
there is no margin on their ending time: if they are just a little late,
then the project will be late.

Solution. The tasks on a critical path, i.e., a longest s-t path.

4. What is the minimum time on the house construction project on Ta-
ble 1? Identify critical tasks.

Solution. Length: 38. Critical tasks: A, B, F, G

2 Production scheduling terminology

Production scheduling is the problem of affecting jobs to machines. Jobs
and machines are generic terms: jobs can be any kind of tasks to be accom-
plished, and machine can be anything that is required for some task.

Jobs are indexed by j and machines by i. There are m machines and n
jobs. If explicitly mentioned, a job j must be operated between its release
date rj and its due date dj . Job j has sometimes a weight, denoted by wj .
The processing time of job j on machine i is denoted by pij : it is the time
needed to operate j on i. The processing time of j may not depend on the
machine, and we denote it in this case pj .

2

On complicated problems, a job may require several processing steps on
different machines. Pair (i, j) then refers to the processing step or operation
of job j on machine i, and its duration is again denoted by pij .

In the literature, a scheduling problem is described by a triplet α|β|γ
where α is the machine environment, β contains additional constraints, and
γ indicated the objective to minimize.

The most frequent machine environment are

• Single machine (1)

• Parallel machines: identical machines in parallel (Pm), parallel ma-
chines with different speeds (Qm), i.e.,

pij
pi′j

does not depend on j, or

unrelated machines in parallel (Rm).

• Open shop (Om) each job must be processed on each of themmachines
in any order.

• Flow shop (Fm): there are m machine in series, and each job has to
be processes on machines 1, . . . ,m in this order. Generally, the order
in which jobs are processed is identical on all machines. If one job can
pass another, β contains the entry prmu

• Job shop (Jm): each job must be processes on each machine, and the
order in which it must be processed is fixed but job dependent.

• Flexible flow shop (FFc) and flexible job shop (FJc) are analogues of
flow shop and job shop, the main difference being that, if there are
c types of machines, there are several machines of each type that are
available and can work in parallel.

Parameter β can contain

• Release dates (rj)

• Preemptions (prmp). Jobs are generally assumed to be completed at
once on a machine. Parameter prmp indicates that, on the contrary,
a job can be stopped and restarted.

• Precedence constraints (prec): some jobs must be performed before
others. Such constraints are easily modeled using an acyclic digraph.

• etc.

We denote by Cij the completion time of job j on i; and by Cj the
completion time of j on the last machine it visits. The lateness Lj of a job
is

Lj = Cj −Dj

and its tardiness is Tj = max(Lj , 0).
Frequent minimized objective γ include

3

• Makespan (Cmax), defined as Cmax = max
j

(Cj),

• Total weigthed completion time (
∑

j wjCj)

• Maximum lateness (Lmax), defined as Lmax = max
j

(Lj)

• Total weighted tardiness (
∑

j wjTj)

3 Single machine problems

3.1 Minimum weighted completion time

Consider the problem 1||
∑

j wjCj : there is no release date, each job has
processing time pj and weight wj .

5. Show that processing the jobs in decreasing
wj

pj
order gives an optimal

solution.

Solution. Consider a solution such that j′ is right after j, and
wj

pj
<

w′
j

p′j
.

Consider the solution obtained by exchanging j and j′. Then the
difference of the cost of the new solution minus the one of the solution
is between the two solutions wjpj′ −wj′pj < 0, and the solution is not
optimal. Hence an optimal solution is obtained by processing the jobs
in decreasing

wj

pj
order.

3.2 Precedence constraints – dynamic programming

Remark: there was an error on this question, which has been corrected.
We consider the problem 1|prec|maxj Tj , where each job j has a given

due date dj , tardiness Tj is defined in Section 2 and precedence constraints
indicated by an acyclic digraph D = ([n], A). Let hj be the mapping t 7→
max(t− dj , 0), such that Tj = hj(Cj).

6. Show that there exists an optimal schedule such that, for each integer
k < n, we have

hjk

(∑
j′∈Jc

pj′

)
= min

j∈Jc : δ+(j)⊆J
hj

(∑
j′∈Jc

pj′

)
. (1)

where jk denotes the kth jobs operated in the schedule, J denotes the
jobs after k in the schedule, and Jc its complementary: Jc = [n]\J .

Solution. Consider an optimal schedule s = j1, . . . , jn. Let k be the
largest integer such that (1) is not satisfied in s. We are going to build

4

an optimal schedule s such that the largest integer k such that (1) is
not satisfied in s is such that k < k. Iterating this procedure at most
n times gives an optimal schedule satisfying the desired property. We
now explain how to build schedule s. We denote by Cj and Tj the
completion time and tardiness for schedule s. Then schedule s defined
by j1, . . . , jk−1, jk+1, . . . , jk, jk, jk+1, . . . , jn is a schedule that respects

the precedence constraints. We denotes by Cj and Tj the completion
time and tardiness of job j under this new schedule.

• If ` < k or ` > k, we have T j` = Tj`

• If k < ` ≤ k, we have T j` ≤ Tj` by monotonicity of h`

• T jk ≤ Tjk by hypothesis.

Hence maxj T j ≤ maxj Tj , and s satisfies the desired property.

7. Give an algorithm solving 1|prec|maxj Tj to optimality.

Solution. Initialize J = ∅. For k from n to 1, do

• select jk in the argmin of min
j∈Jc : δ+(j)⊆J

hj

(∑
j′∈Jc

pj′

)
,

• J ← J ∪ {jk}
• k ← j − 1

We can then prove that the algorithm returns the optimal result by
iteration on the number of jobs. If there is one job, the result is trivial.
Suppose now that there is n + 1 jobs. Let s̃ = j̃1, . . . , j̃n+1 be the
schedule produce by that algorithm. Let s = j1, . . . , jn be an arbitrary
schedule, and k be such that jk = j̃n+1. Using the same proof as in the
previous question, we obtain s = j1, . . . , jk−1, . . . , jn+1, jk has a smaller
maximum tardiness than s. Furthermore by, induction hypothesis,
j̃1, . . . , j̃n is an optimal scheduling of {j1, . . . , j̃n}, and hence s̃ has
smaller maximum tardiness that s. This gives the induction hypothesis
and concludes the proof .

3.3 Precedence constraints – mathematical programming

We consider now 1|prec|
∑

j wjTj with pj ∈ R+, where we recall that Tj is
the tardiness.

8. Give a MILP modeling this problem (indication: “big M” constraints
may be helpful).

5

Solution. Let M =
∑

j∈[n] pj We use continuous variables Tj and Cj ,
and binary variables xjk indicating if task j is operated before task k.

min
Cj

∑
j∈[n]

wjTj (2a)

s.c. Cj ≥ Ck + pj −Mxjk, ∀j < k (2b)

Ck ≥ Cj + pk −M(1− xjk), ∀j < k (2c)

Ck ≥ Cj + pk for all (j, k) ∈ A (2d)

Cj − pj ≥ 0 for all j in [n] (2e)

Tj ≥ Cj − dj (2f)

tj ≥ 0 (2g)

Cj ≥ 0 (2h)

xjk ∈ {0, 1} (2i)

We now consider the simpler case where pj ∈ Z+ for all j. Let T =
∑

j pj
Consider the following MILP.

min
∑
j∈J

wj
∑
t∈[T]

max(t− dj , 0)xjt (3a)

s.t.
T∑
t=0

xjt = 1 ∀j ∈ J (3b)

t+pk∑
t′=0

xkt′ ≤
t∑

t′=0

xjt′ ∀(j, k) ∈ A,∀t ∈ [T − pk] (3c)

∑
j∈J

t+pj−1∑
t′=t

xjt′ ≤ 1 ∀t ∈ [T] (3d)

xjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ {0, . . . , T} (3e)

9. Explain the meaning of the binary variable xjt and of the different
constraints.

Solution. Binary variable xjt indicates if Cj = t.

10. An interval matrix is a matrix such that each line is of the form
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0). show that an interval matrix is totally uni-
modular.

6

Solution. Subtract to each column (except the first) the previous col-
umn. The matrix obtained has at most one 1 and one -1 in its non-zero
terms.

11. Show that the matrix defined by constraints (3d) is totally unimodular

Solution. It is an interval matrix, and therefore totally unimodular.

12. Explain why the subproblem of the Lagrangian Relaxation of con-
straints (3b) and (3c) can be solved in polynomial time.

Solution. The matrix of the pricing subproblem is totally unimodu-
lar, hence an optimal solution of its linear relaxation gives an optimal
solution of the subproblem. Such a solution can be computed in poly-
nomial time using the ellipsoid or interior point algorithms.

4 Easy multiple machines problems

4.1 Operating scheduled jobs with a minimum number of
machines

Suppose that we have a set of n jobs with fixed starting and ending times
dj = rj + pj that have to be processed by identical machines.

13. Show that the minimum number of machines required to operate all
these jobs (and the schedules of these machines) can be computed in
polynomial time.

Solution. We identify the set of jobs by [n]. Let D be the digraph with
vertex set ([n]×{0, 1})∪{s, t}, where s and t are respectively a source
and a sink. Let A be the arc set obtained by adding, for all j in [n]

• an arc a =
(
s, (j, 0)

)
for all j in [n] with lower capacity `a = 0,

upper capacity ua = +∞, and cost ca = 0,

• an arc a =
(
(j, 0), (j, 1)

)
with `a = 1, ua = 1, and ca = 0,

• an arc a =
(
(j, 1), t

)
with `a = 0 ua = +∞, and ca = 0,

• arc a =
(
(j, 1), (j′, 0)

)
with `a = 0 ua = +∞, and ca = 0 for all

j′ such that dj ≤ rj′ ,

as well as an arc a = (t, s) with `a = 0, ua =∞, and ca = 1. A mini-
mum cost circulation with lower capacity (la), upper capacity ua, and

7

cost (ca) gives an optimal solution – we recall that a circulation is a b-
flow with b = 0. Indeed, as capacity are integers, such a circulation can
be decomposed into cycles, and `a = 1, ua = 1 for a =

(
(j, 0), (j, 1)

)
of the form s, (j1, 0), (j1, 1), . . . , (jk, 0), (jk, 1), t ensures that this de-
composition partitions the job set: given a job j, (j, 0) and (j, 1) is
on a unique cycle. Furthermore, the definition of arcs

(
(j, 1), (j′, 0)

)
ensure that there is a bijection between sequences of jobs that can be
operated by one machine and cycles.

Such a circulation can be found in polynomial time using a minimum
cost flow algorithm.

4.2 Minimum makespan with preemption allowed

Consider the problem Pm|prmp|Cmax, where m jobs are processed on unre-
lated machines with processing times pj , each job has release date rj .

14. Let C be an upper bound on the value of an instance of Pm|prmp|Cmax.
Give a simple algorithm to rebuild a solution with value C.

Solution. Let mj and rj be the quotient and the rest of the division

of
∑j−1

j′=1 pj by Cmax, and m′j and r′j the quotient of the division of∑j
j′=1 pj by Cmax. If mj = m′j , we schedule j on mj between rj

and r′j . Otherwise, we schedule j on j between rj and C, and on m′j
between 0 and r′j . The solution is a schedule (no two machines on the
same job at the same time) as C is larger than pj .

15. Prove that the following linear program

min z (4a)

s.t.
n∑
i=1

xij = pj , ∀j ∈ [n], (4b)

n∑
i=1

xij ≤ z, ∀j ∈ [n], (4c)

m∑
j=1

xij ≤ z, ∀i ∈ [m], (4d)

xij ≥ 0, z ≥ 0 ∀i ∈ [m], ∀j ∈ [n]. (4e)

gives the optimal value of Pm|prmp|Cmax, and explain how to recon-
struct an optimal solution from this value.

Solution. It is immediate the a solution of Pm|prmp|Cmax gives a
solution of the linear program. Indeed, it suffices to define xij as the
time spent by machine i in job j.

8

Conversely, given the optimal value z∗ of the linear program, and using
the same technique as in the previous question, we rebuild a solution
of Pm|prmp|Cmax with value z: constraint (4c) ensures that a job is
not scheduled at the same time on two machines, and constraint (4d)
that we do not use more machine than we have.

5 Branch and Bound and heuristics for the job
shop problem

To conclude, we introduce a powerful tool that enables to solve many schedul-
ing problems, the disjunctive graphs. We illustrate it on the job shop prob-
lem Jm||Cmax.

This graph contains

• A vertex for each processing step of each job, as well as a source vertex
s and a sink vertex t

• An arc between successive steps of each job.

• An
(
(i, j), (i, j′)

)
edge between processing steps of different jobs on

using the same machine.

An orientation of the edges of the disjunctive graph is an orientation
(turning each edge into an arc) such that the resulting digraph is acyclic.

16. Explain why there is bijection between acyclic orientations of the edges
of the disjunctive graph and solutions of the scheduling problem.

Solution. Orienting an arc enables to indicate if a processing step is
performed before another on a given machine.

17. Given an orientation, how do we efficiently compute the makespan
Cmax of the corresponding scheduling.

Solution. Longest s-t path.

18. Explain how the disjunctive graph can be used to build a Branch and
Bound algorithm.

Solution. Branch by orienting the edges. A bound is obtained by
searching the longest path in the digraph where no-oriented edges are
removed.

19. Propose a metaheuristic to solve the problem:

9

(a) How is a solution encoded

Solution. Orientation of the arcs

(b) Propose several neighborhoods

Solution. Reverse orientation of an arc. Reverse orientation of
the disjunctive arcs of a critical path.

20. Based on the disjunctive graph, propose a MILP modeling the prob-
lem.

Solution. For each i, j, and j′, let xijj′ be a binary indicating if step
(i, j) is performed before (i, j′). Let M =

∑
i

∑
j pij The following

MILP solves the problem.

min Cmax (5a)

s.t. Cij ≤ Cmax ∀i ∈ [m], j ∈ [n] (5b)

xijj′ = 1− xij′j ∀i ∈ [m], ∀j ∈ [n],∀j′ ∈ [n] (5c)

Ci′j ≥ Cij + pi′j ∀
(
(i, j), (i′, j)

)
∈ A (5d)

Cij′ ≥ Cij + pij′ −Mxij′j ∀
(
(i, j), (i, j′)

)
∈ E (5e)

xijj′ ∈ {0, 1} ∀
(
(i, j), (i, j′)

)
∈ E (5f)

Cij ≥ 0 ∀i ∈ [m], j ∈ [n] (5g)

10

	Minimum duration of a project
	Production scheduling terminology
	Single machine problems
	Minimum weighted completion time
	Precedence constraints – dynamic programming
	Precedence constraints – mathematical programming

	Easy multiple machines problems
	Operating scheduled jobs with a minimum number of machines
	Minimum makespan with preemption allowed

	Branch and Bound and heuristics for the job shop problem

