ENPC – BETON ARME

CALCUL DU FERRAILLAGE D'UNE PLAQUE à l'ELU

M. Bué - Le 14/05/2020

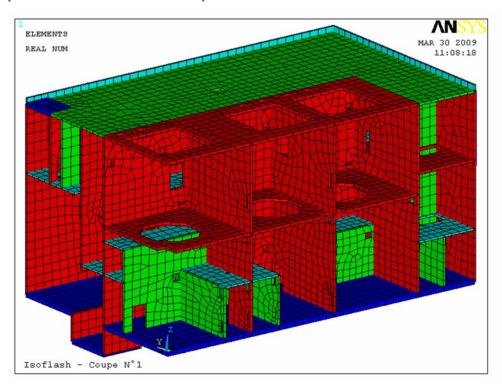
SOMMAIRE

- 1. Présentation
- 2. Plaque soumise uniquement à des efforts de membrane : méthode de Wood
- 3. Plaque soumise à des efforts quelconques : méthode de Capra-Maury
- 4. Exemples de calcul
- 5. Exercice d'application

1. PRESENTATION

> Contexte général

Les structures sont de plus en plus fréquemment justifiées par des <u>calculs</u> <u>aux éléments finis</u> -> modélisation des voiles et planchers en éléments de coques. D'où la nécessité de pouvoir calculer ensuite les armatures à mettre en place dans les coques.



Exemple - Bâtiment « Isoflash » de l'usine Comurhex Malvési

1. PRESENTATION

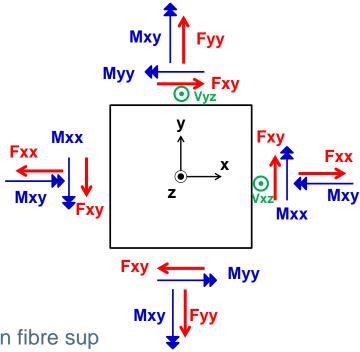
- On considère une plaque d'épaisseur h
- On se place au voisinage d'un nœud (élément infiniment petit)
- On suppose la plaque soumise aux 6 efforts ELU suivants :
- Fxx, Fyy et Fxy en kN/ml
 Efforts de membrane

Convention de signes :

- Fxx et Fyy >0 en en traction
- Fxy >0 si tourné de +90° par rapport Fxx
- Mxx, Myy et Mxy en kN.m/ml
 Moments de flexion et de torsion

Convention de signes :

- Mxx > 0 s'il tend la fibre sup (z > 0)
- Myy >0 s'il tend la fibre sup
- Mxy > 0 s'il crée un cisaillement σ xy > 0 en fibre sup

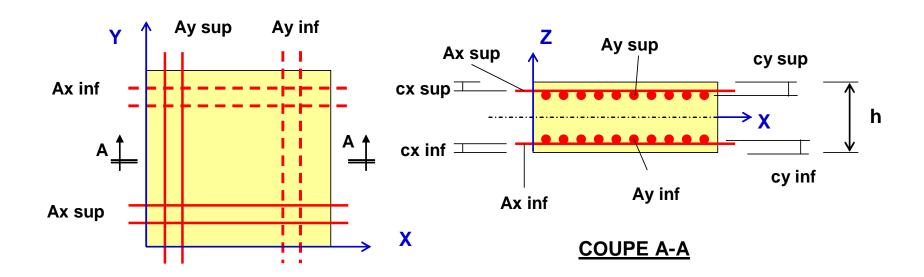


Nota: il existe également 2 efforts tranchants Vxz et Vyz, dont nous ne parlerons pas dans le présent exposé.

> Objectif:

Détermination du ferraillage, c'est-à-dire des 4 sections d'armatures :

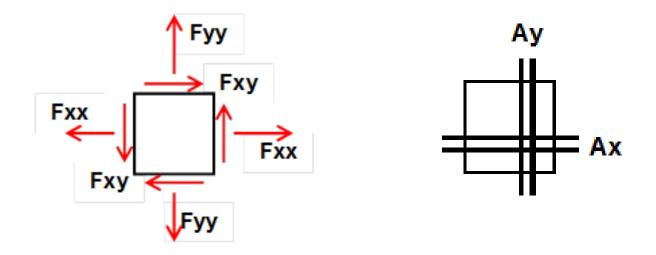
- Ax_inf Ax_sup
- Ay_inf Ay_sup (en cm²/ml)



2. PLAQUE SOUMISE UNIQUEMENT A DES EFFORTS DE MEMBRANE : METHODE DE WOOD

> Présentation

- Plaque d'épaisseur h soumise uniquement à des efforts de membrane



 Objectif : déterminer le ferraillage nécessaire pour résister à ces efforts ELU (en cm²/ml)

> Enoncé de la méthode de Wood :

- (i) <u>Il faut placer des aciers équilibrant les efforts suivants</u> (>0 en traction) :
 - dans le sens X : Rx = Fxx + |Fxy|
 - dans le sens Y : Ry = Fyy + |Fxy|

On aura donc : $Ax = Rx / f_{yd}$

 $Ay = Ry / f_{yd} \qquad avec f_{yd} = f_{yk} / \gamma_s$

(ii) Si l'une de ces quantités est négative, les formules deviennent :

 1^{er} cas - Rx < 0 : Rx = 0

 $Ry = Fyy + Fxy^2 / |Fxx|$

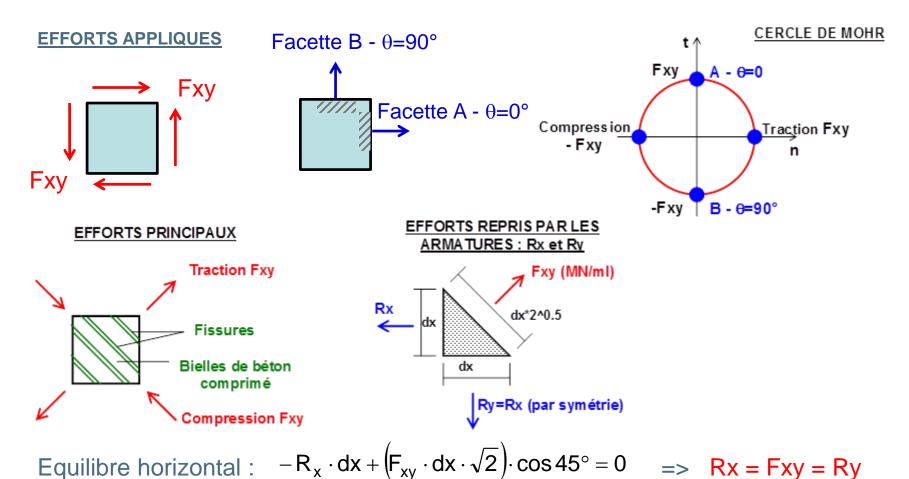
 $2^{\text{ème}}$ cas - Ry < 0 : Ry = 0

 $Rx = Fxx + Fxy^2 / |Fyy|$

(iii) Si les 2 quantités Rx et Ry sont < 0, on adopte : Rx = 0 et Ry = 0

Nota: la méthode de Wood s'applique également au cas d'une plaque soumise uniquement à des moments Mxx, Myy, Mxy

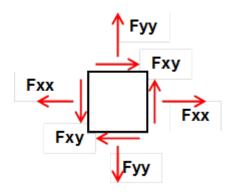
> Justification dans le cas particulier du cisaillement simple



U.I - Coques ELU

(il s'agit ici d'efforts linéiques, en MN/ml)

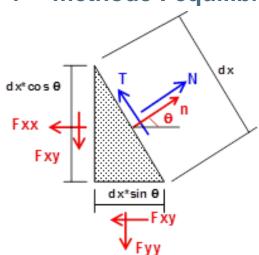
> Justification dans le cas général - Avec 3 efforts Fxx, Fyy et Fxy



Par analogie avec ce qui précède, on calcule l'effort "N(θ)" s'exerçant perpendiculairement à une facette d'angle θ quelconque.

On peut faire ce calcul de 2 façons :

a) 1ère méthode : équilibre d'un coin



$$\begin{array}{ll} \sum F_x = 0 \ \Rightarrow \ -F_{xx} \cdot dx \cdot cos\theta - F_{xy} \cdot dx \cdot sin\theta + N \cdot cos\theta \cdot dx - T \cdot sin\theta \cdot dx = 0 \\ \sum F_y = 0 \ \Rightarrow \ -F_{xy} \cdot dx \cdot cos\theta - F_{yy} \cdot dx \cdot sin\theta + N \cdot sin\theta \cdot dx + T \cdot sin\theta \cdot dx = 0 \end{array}$$

Il s'agit d'un système de 2 équations à 2 inconnues N et T.

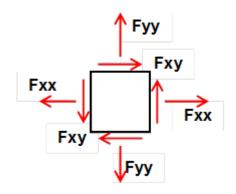
On pose
$$C = \cos \theta$$

$$S = \sin \theta$$

On obtient tous calculs faits:

$$N = C^2 \cdot F_{xx} + S^2 \cdot F_{yy} + 2CS \cdot F_{xy}$$

b) 2ème méthode : calcul matriciel



Dans le repère global (0,X,Y) on pose :

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} F_{xx} & F_{xy} \\ F_{xy} & F_{yy} \end{bmatrix}$$

- 1ère colonne = efforts s'exerçant sur la facette θ =0
- 2ème colonne = efforts s'exerçant sur la facette θ =90°

On effectue un changement de base par rotation d'un angle
$$\theta$$
:
$$[F(\theta)] = {}^{t}[P] \cdot [F] \cdot [P]$$
avec
$$[P] = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} C & -S \\ S & C \end{pmatrix}$$
(= matrice de passage)

$$\begin{bmatrix} F(\theta) \end{bmatrix} = \begin{pmatrix} C & S \\ -S & C \end{pmatrix} \cdot \begin{pmatrix} F_{xx} & F_{xy} \\ F_{xy} & F_{yy} \end{pmatrix} \cdot \begin{pmatrix} C & -S \\ S & C \end{pmatrix} = \begin{pmatrix} C^2 \cdot F_{xx} + S^2 \cdot F_{yy} + 2CS \cdot F_{xy} & \dots \\ CS \cdot \left(F_{yy} - F_{xx} \right) + \left(C^2 - S^2 \right) \cdot F_{xy} & \dots \end{pmatrix}$$

Le 1er terme de cette matrice correspond à l'effort $F(\theta)$ s'exerçant perpendiculairement à la facette de normale θ ; on retrouve bien la même valeur que précédemment.

> Effort résistant selon cette même facette d'angle

On fait l'hypothèse que les aciers ne peuvent exercer qu'un effort parallèle à leur direction :

 $[R] = \begin{vmatrix} R_x & 0 \\ 0 & R_y \end{vmatrix}$

- Changement de repère (rotation d'angle q) : $R(\theta) = C^2 \cdot R_x + S^2 \cdot R_y$

> Mise en équation

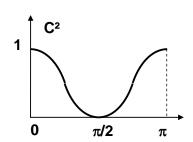
- La résistance de la section sera assuré si $\forall \theta : R(\theta) \ge F(\theta)$

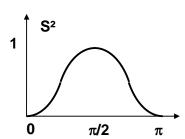
soit
$$C^2 \cdot R_x + S^2 \cdot R_y \ge C^2 \cdot F_{xx} + S^2 \cdot F_{yy} + 2CS \cdot F_{xy}$$
 $\forall \theta$

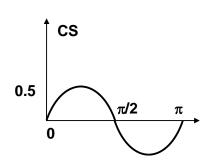
On pose $D_x = R_x - F_{xx}$ (= supplément d'armatures à placer en X par rapport à Fxx) $D_y = R_y - F_{yy}$ (= supplément d'armatures à placer en Y par rapport à Fyy)

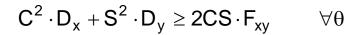
$$\Rightarrow \quad C^2 \cdot D_x + S^2 \cdot D_y \ge 2CS \cdot F_{xy} \qquad \forall \theta$$

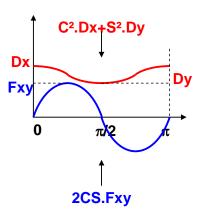
> $1^{\text{ère}}$ méthode de résolution : tracé de courbes fonction de θ











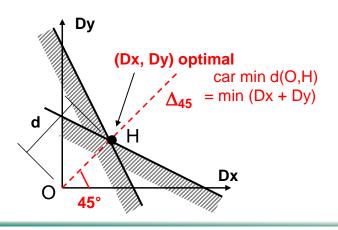
- Il est clair que Dx = Dy = |Fxy| est une solution
 - Mais est-ce la solution optimale, celle qui minimise la quantité totale Dx + Dy?
- Pour θ =45°: (Dx+Dy)/2 \geq Fxy => Dx+Dy \geq 2 Fxy
- Donc on ne pourra pas trouver mieux que Dx = Dy = Fxy

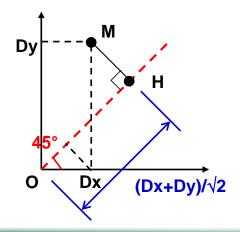
Cette solution est bien optimale

Cqfd:

- les armatures de la direction X doivent résister à Fxx + Fxy
- les armatures de la direction Y doivent résister à Fyy + Fxy

- > 2^{ème} méthode de démonstration : géométrie dans un plan (Dx, Dy)
- On veut: $f(\theta) = C^2 \cdot D_x + S^2 \cdot D_y 2CS \cdot F_{xy} \ge 0$ $\forall \theta$
- Pour une valeur donnée de θ , et en se plaçant en coordonnées (Dx, Dy), ceci est l'équation d'un demi-plan limité par la droite d'équation $f(\theta) = 0$
- On peut remarquer que pour θ' = π/2-θ, on a : cos(π/2-θ)=sin(θ) = S sin(π/2-θ)=cos(θ) = C donc l'équation devient : f(θ') = S² . Dx + C² . Dy 2CS . Fxy > 0
 Ceci est une droite de pente inverse à la précédente, et passant par un même point de la bissectrice à 45° : Dx=Dy=2CS.Fxy
- $2^{\text{ème}}$ remarque : pour un point M=(Dx, Dy) quelconque, la distance (0, H) = projection de M sur la bissectrice à 45° vaut $(D_x + D_y)/\sqrt{2}$ donc est une mesure de "Dx+Dy"



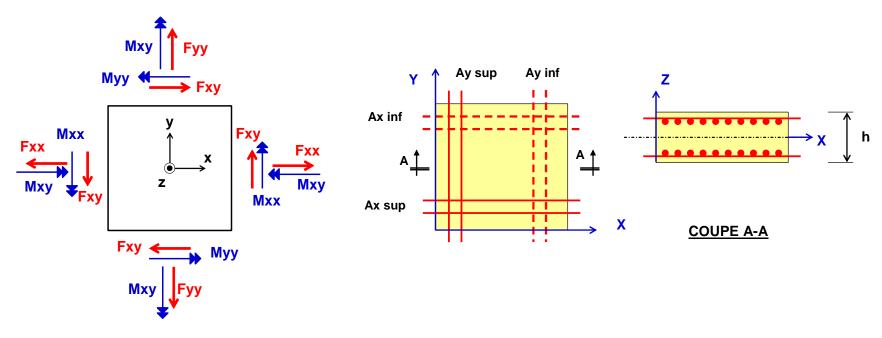


L'optimum correspond donc bien à Dx=Dy Et la fonction « 2CS » vaut 1 au maximum => Dx = Dy = Fxy cqfd (Rx=Fxx+Fxy, etc.)

3. PLAQUE SOUMISE A DES EFFORTS QUELCONQUES : METHODE DE CAPRA-MAURY

> Présentation

- Plaque d'épaisseur h soumise à 6 efforts quelconques



 Objectif : déterminer le ferraillage nécessaire pour résister à ces efforts à l'ELU (en cm²/ml)

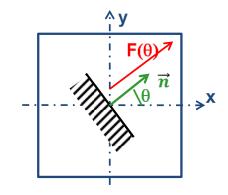
3. Méthode de Capra-Maury

Principe de la méthode :

> Efforts perpendiculaires à la facette d'angle θ

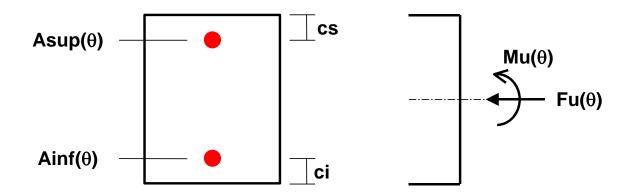
$$F(\theta) = C^2 \cdot Fxx + S^2 \cdot Fyy + 2CS \cdot Fxy$$

 $M(\theta) = C^2 \cdot Mxx + S^2 \cdot Myy + 2CS \cdot Mxy$



> Détermination des aciers Ainf (θ) et Asup (θ)

Les aciers peuvent être déterminés dans cette facette par un calcul de type : section rectangulaire (largeur 1ml ; épaisseur h) soumise à flexion composée => on peut calculer Ainf(θ) et/ou Asup(θ).



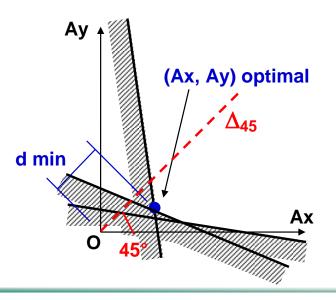
3. Méthode de Capra-Maury

> Choix des 4 sections d'acier selon X, Y

- On doit satisfaire: C². Axj + S². Ayj ≥ Aj (θ) quel que soit θ
 (j = inf ou sup).
- On raisonne désormais sur une face de la section (inf ou sup), et on désigne par Ax et Ay les sections correspondantes.

On doit choisir Ax et Ay tels que : $C^2 \cdot Ax + S^2 \cdot Ay \ge A(\theta)$ quel que soit θ tout en minimisant la somme Ax+Ay

Chaque condition peut s'interpréter de la façon suivante : le point (Ax, Ay) doit se trouver dans un demi-plan limité par la droite Δ_{θ} d'équation : C² . Ax + S² . Ay = A (θ)

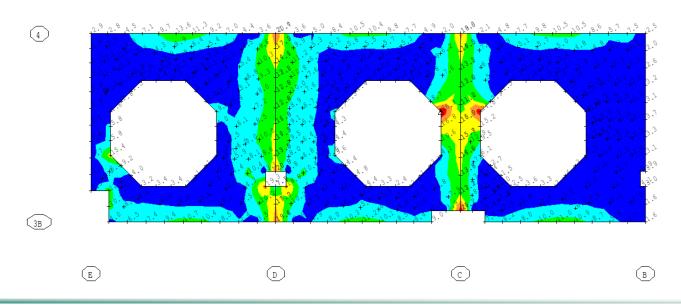


On retient ensuite le point (Ax, Ay)
permettant de minimiser la distance « d »
en projection sur la droite Δ45
(minimisation de Ax + Ay)

.

LOGICIELS DEVELOPPES PAR LES BUREAUX D'ETUDE

- Différents bureaux d'études ont développé leur propre logiciel permettant d'effectuer la détermination des armatures à l'ELU en utilisant la méthode de <u>Capra-Maury</u> (car pendant longtemps les logiciels du commerce géraient mal ce type de calcul. On utilisait autrefois plutôt des modélisation de type barre, et non de type plaques et coques...)
- Par exemple à setec tpi : logiciel <u>ARMATEC</u>, permettant de sortir des cartographies d'armatures en couleur

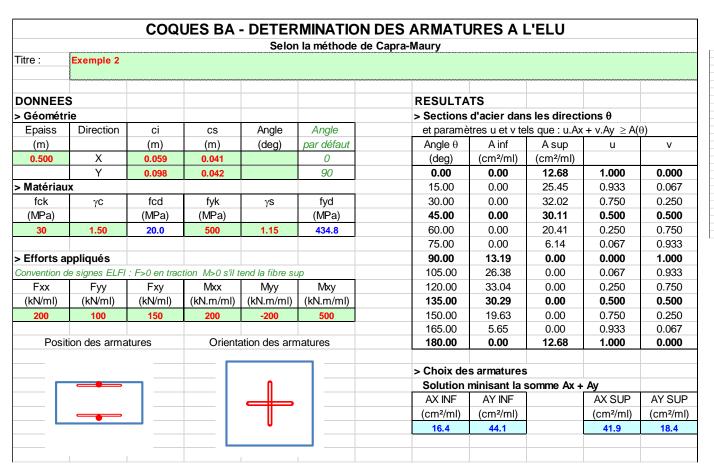


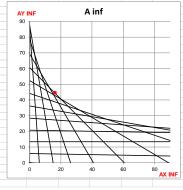
> FEUILLES EXCEL

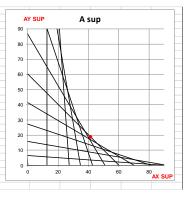
- On peut également développer des feuilles excel permettant la détermination automatique d'armatures selon méthode de Capra-Maury
- Dans l'exemple ci-après, il est possible de faire le calcul pour des armatures <u>non orthogonales</u>

(car la méthode reste la même : après avoir calculé les armatures $A(\theta)$ nécessaires dans toutes les directions θ , on choisit les sections d'armatures nécessaires dans 2 directions imposées...)

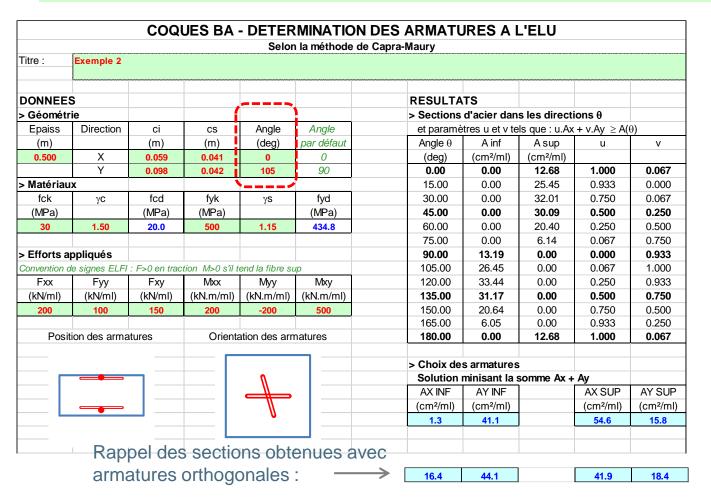
> Exemple 1

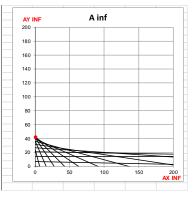


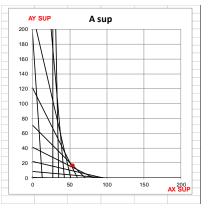




> Exemple 2 – Avec armatures non orthogonales







L'angle éventuel des armatures peut avoir une très grosse influence sur les aciers nécessaires !!

> DONNEES DU CALCUL

- Epaisseur de la dalle : Ep = 0.60 m

- Position des aciers : c = 0.06 m = d = 0.54 m

- Béton : fck = 30 MPa = fcd = 20 MPa

- Armatures: fyk = 500 MPa = > fyd = 434.8 MPa

- Efforts appliqués Convention « génie civil » (>0 en compression)
 - \circ Fxx = 0.50 MN/ml
 - \circ Fyy = -0.20 MN/ml
 - \circ Fxy = 0.15 MN/ml
 - \circ Mxx = 0.80 MN.m/ml (>0 s'il tend la fibre inf)
 - \circ Myy = 0.40 MN.m/ml
 - \circ Mxy = 0.20 MN.m/ml

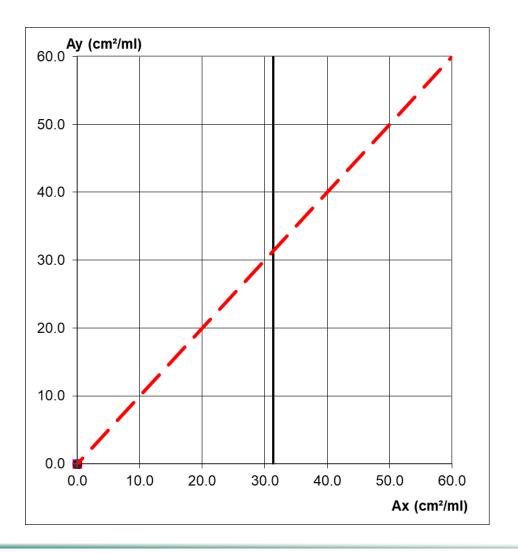
Déterminer les armatures par la méthode de Capra-Maury

> Procéder en construisant un tableau :

			Eff	orts	Calculs en flexion composée						
θ	С	S	F(θ)	Μ(θ)	M_Ac_t	μ	$\beta = \mathbf{z}/\mathbf{d}$	A tendu	Pente		
degrés			(MN/mI)	(MN.m/ml)	(MN.m/ml)			(cm²)	-C ² /S ²		
0	1.000	0.000	0.500	0.800	0.920	0.158	0.914	31.4	infini		
15				Formules employées							
30											
45			• $C = \cos\theta$ $S = \sin\theta$								
60			• $F(\theta) = C^2 \cdot Fxx + S^2 \cdot Fyy + 2CS \cdot Fxy$								
75				• $M(\theta) = C^2 \cdot Mxx + S^2 \cdot Myy + 2CS \cdot Mxy$							
90				`				200.141	Δy		
105				• $M_{Ac_t} = M(\theta) + F(\theta) \times 0.24m$							
120				• 11 —		M _{Ac_t}					
135				$ \mu = \frac{M_{Ac_t}}{1m \times 0.54^2 \times 20 \text{ MPa}} $							
150				• $\beta = 0.5 \cdot (1 + \sqrt{1 - 2\mu})$							
165					(-	· v -	— F*)				
180				• A _{to}	ndu = -	$\frac{1}{M} \cdot \left(\frac{M}{M}\right)$	<u> Ac_t</u> — F	(θ)			
				• $A_{\text{tendu}} = \frac{1}{f_{\text{yd}}} \cdot \left(\frac{M_{\text{Ac_t}}}{\beta \cdot d} - F(\theta) \right)$							

• Les droites passent par le point $Ax = Ay = A(\theta)$

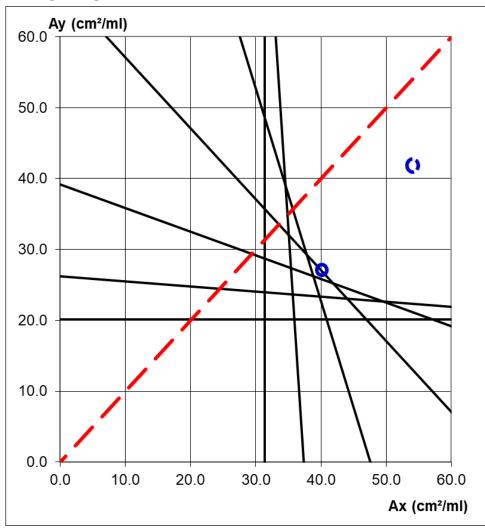
> Représentation de la 1^{ère} droite θ =0 : droite verticale (pente infinie)



> Tableau final

			Effe	orts	Calculs en flexion composée				
θ	С	S	F(θ)	Μ(θ)	M_Ac_t	μ	β= z/d	A tendu	Pente
degrés			(MN/m1)	(MN.m/ml)	(MN.m/ml)			(cm²)	-C ² /S ²
0	1.000	0.000	0.500	0.800	0.920	0.158	0.914	31.4	infini
15	0.966	0.259	0.528	0.873	1.000	0.171	0.905	34.9	-13.93
30	0.866	0.500	0.455	0.873	0.982	0.168	0.907	35.7	-3.00
45	0.707	0.707	0.300	0.800	0.872	0.150	0.919	33.5	-1.00
60	0.500	0.866	0.105	0.673	0.698	0.120	0.936	29.4	-0.33
75	0.259	0.966	-0.078	0.527	0.508	0.087	0.954	24.5	-0.07
90	0.000	1.000	-0.200	0.400	0.352	0.060	0.969	20.1	0.00
105	-0.259	0.966	-0.228	0.327	0.272	0.047	0.976	17.1	-0.07
120	-0.500	0.866	-0.155	0.327	0.290	0.050	0.975	16.2	-0.33
135	-0.707	0.707	0.000	0.400	0.400	0.069	0.964	17.7	-1.00
150	-0.866	0.500	0.195	0.527	0.574	0.098	0.948	21.3	-3.00
165	-0.966	0.259	0.378	0.673	0.764	0.131	0.930	26.3	-13.93
180	-1.000	0.000	0.500	0.800	0.920	0.158	0.914	31.4	infini

> Graphique final



On peut choisir:

 $Ax = 40 \text{ cm}^2/\text{ml}$

 $Ay = 27 \text{ cm}^2/\text{ml}$

En effet pour la droite à 45° : $C^2.Ax + S^2.Ay \ge A(\theta)$

$$0.5.(Ax + Ay) \ge 33.5$$

$$Ay \ge 67 - Ax = 27 \text{ cm}^2/\text{ml}$$